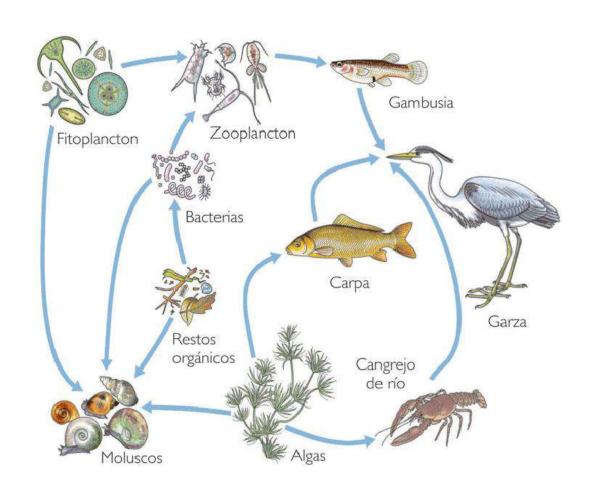


Ingeniería Industrial Sostenible

María Catalina Ramírez
Profesora Asociada, Departamento de Ingeniería Industrial.
Directora Ingenieros sin Fronteras Colombia
Andrés Acero López, Camilo Navarro
Estudiante Doctoral, Facultad de Ingeniería.



Volviendo a la sostenibilidad

La sostenibilidad es una propiedad de los sistemas socio- ecológicos que resulta de la dinámica preservación a largo plazo en medio de un ambiente cambiante.

Naturaleza sostenible

Características de los sistemas naturales

- No existen residuos
- Los materiales son metabolizados
- Uso de energía a bajas temperaturas
- No existe control central
- Gran diversidad de especies y redundancia
- No linealidad en el comportamiento (vive o muere)

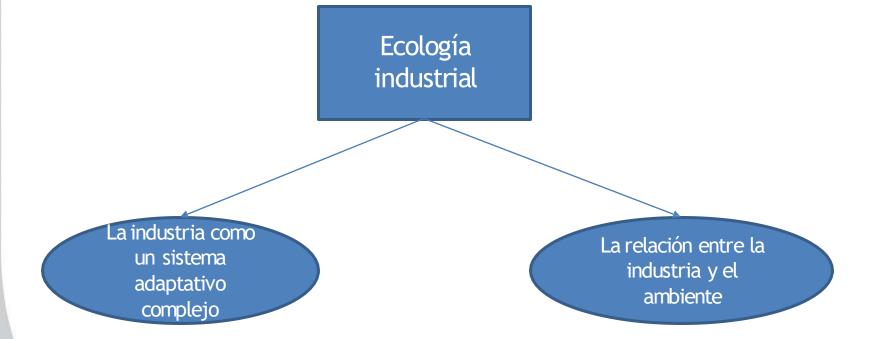
La industria – sistemas insostenibles

Características de los sistemas industriales

- Mucho desperdicio -Pocos ciclos de materiales cerrados.
- Los materiales sufren transformaciones.
- Uso de energía a altas temperaturas
- Control central débil
- Diversidad moderada de actividades y redundancia
- No linealidades en el comportamiento

Pregunta - Sistemas industriales

Imagine la cadena de valor de una industria cualquiera. ¿Es esta industria "sostenible"? ¿Cómo podría apreciar algunos de los aspectos de la sostenibilidad en esta industria?



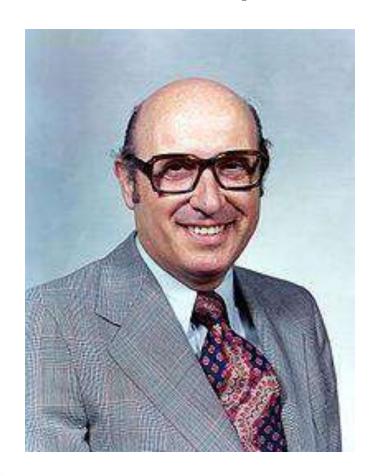
Sin embargo...

- Nuestro objetivo final de este curso el lograr la sostenibilidad en la gestión de sistemas complejos tales como la industria.
- Idea: Tratemos de imitar la naturaleza y nos esforzamos por hacer que nuestros sistemas industriales trabajen de la misma forma que los sistemas naturales y crear relaciones sostenibles entre los dos.

La industria desde la ecología

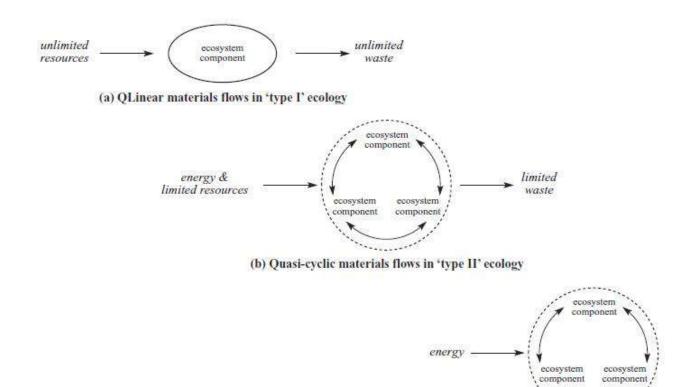
Algo de historia

La ecología industrial está enraizado en el análisis de sistemas y es una aproximación de sistemas de alto nivel para enmarcar la interacción entre sistemas industriales y sistemas naturales.


Robert Ayres - Metabolismo industrial

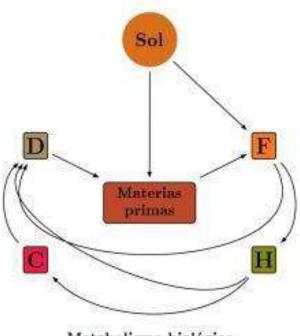
El uso de materiales y energía por parte de la industria y la forma en que estos materiales fluyen a través de los sistemas industriales y se transforman y luego se disipan como desechos.

Frosch & Gaullopolous

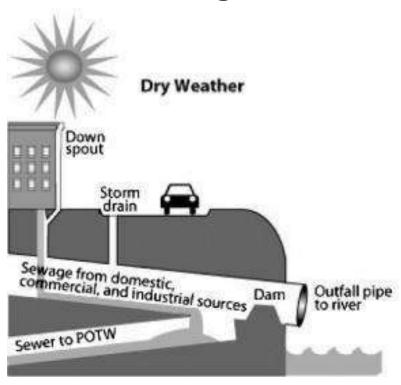

- "The traditional model of industrial activity ... should be transformed into a more integrated model: an industrial
- ecosystem. In such a
 system the consumption of
 energy and materials is
 optimized, waste
 generation is minimized,
 and the effluents of one
 process ... serve as the
 raw material for another "

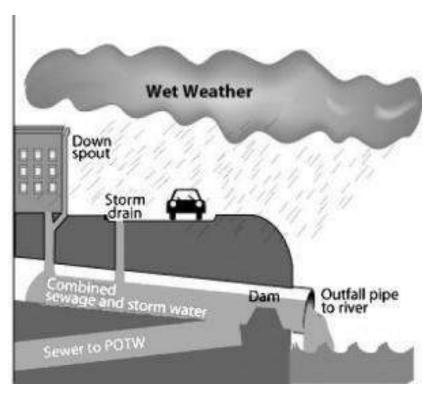
La ecología industrial (EI)

- La ecología industrial es el medio por el cual la humanidad puede aproximarse deliberadamente y mantener la sostenibilidad, dada una evolución continua de la economía, la cultura y la tecnología
- El concepto requiere que un sistema industrial no debe ser visto aislado de su entorno, sino como parte de él.
- Es una visión sistémica la cual busca optimizar el ciclo total de materiales desde el material virgen a los materiales finales, los componentes, los productos, los productos obsoletos y la disposición final.

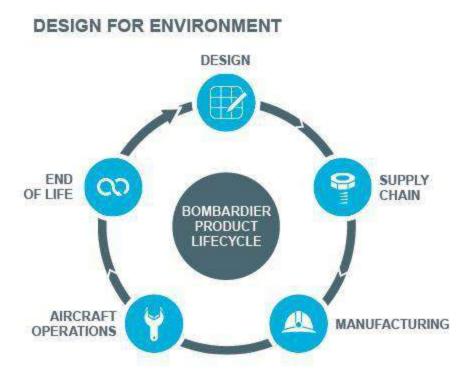







Metabolismo biológico

Metabolismo industrial



El lado industrial de IE

En la compañía

- Diseño para la sostenibilidad
- Producción más limpia
- Eco-eficiencia
- Contabilidad verde

El lado industrial de IE

Entre compañías

- Parques ecoindustriales (Simbiosis industrial)
- Ciclos de vida de los productos
- Iniciativas de los sectores industriales

El lado industrial de IE

Regional/Global

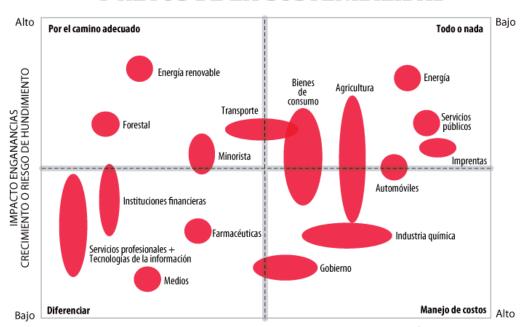
- Ciclos y presupuestos
- Estudio de flujo de materiales y energía
- Desmaterialización y descarbonización

Pregunta – tecnología y ecología industrial

A la luz de lo visto sobre ecología industrial, comente la siguiente frase:

"All of our exalted technological progress, civilization for that matter, is comparable to an axe in the hand of a pathological criminal." Albert Einstein

El rol de la tecnología



- Innovación tecnológica para solucionar los problemas.
 - Eco-diseño (O diseño para la sostenibilidad)
 - Innovación tecnológica con resultados ambientales

El rol de la empresa

MATRIZ DE IMPACTO INDUSTRIAL Y RETOS DE LA SOSTENIBILIDAD

FUENTE: ENCUESTA E CONOMIST INTELLIGENCE UNIT; GOLDMAN SACHS; Y ANÁLISIS, DE A.T. KEARNEY.

La empresa, como lugar de experticia tecnológica, son agente esencial para lograr el desarrollo sostenible

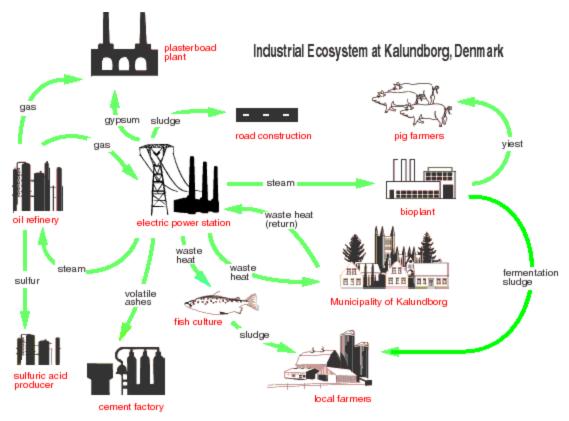
El rol de la empresa

La empresa toma un rol de creador de políticas, no de tomador de políticas

Algunas industrias que han trabajado en El

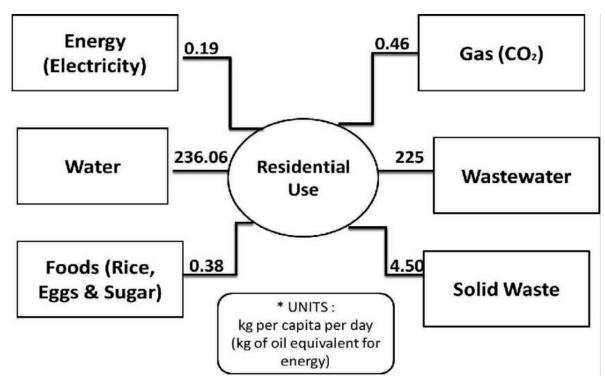
Hewlet-Packard
BMW Volvo

Xerox NEC Philips

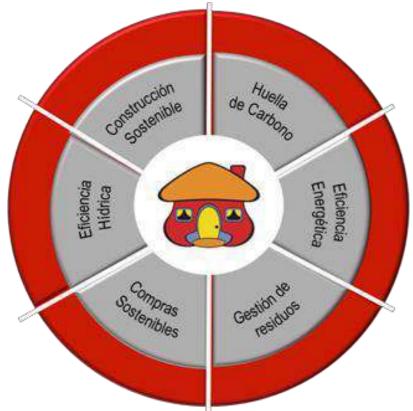

Sony

Bosch Procter and Gamble

Motorola


Pitney Bowes 3M

Crear ecosistemas industriales


Equilibrar los insumos industriales y los productos a niveles naturales

Desmaterialización de la producción industrial

Mejorar la eficiencia de los procesos industriales

Uso de energía.

Alinear las políticas con el concepto de ecología industrial

INDICADORES DE SOSTENIBILIDAD

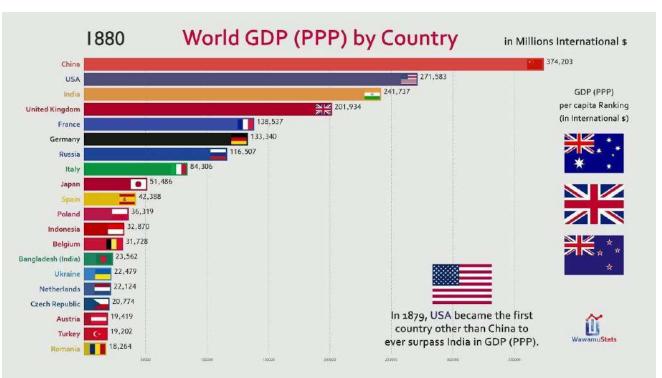
¿Cómo podemos medir la efectividad de estos sistemas en cuanto a su eficiencia económica o energética, o bien su impacto social y en la conservación de los recursos naturales?

¿Qué propiedades deben tener los sistemas productivos para brindar un nivel adecuado de bienes y servicios, cuando están sujetos a diferentes tipos de perturbaciones y cambios estructurales de largo plazo?

¿Cómo podemos operativizar el concepto de sostenibilidad en recomendaciones prácticas que nos permitan mejorar los sistemas productivos?

Para crear sostenibilidad deben cumplirse con:

- Suficientemente productiva (dependiendo del nivel de análisis).
- Económicamente viable (a largo plazo y contabilizando todos los costos).
- Ecológicamente adecuada (que conserve la base de recursos naturales y que preserve la integridad del ambiente en el ámbito local, regional y global).
- Cultural y socialmente aceptable.



Evaluación de sostenibilidad

La evaluación de la sostenibilidad consiste en incluir la tecnología, la inversión financiera, el conocimiento, las prácticas ecológicas, y fundamentalmente considerar un cambio ético y filosófico respecto a nuestra necesidad hacia la conservación de las especies, culturas, sociedades y medio ambiente.

¿Qué es un indicador?

Un indicador es algo que lo ayuda a comprender dónde está, hacia dónde se dirige y qué tan lejos está de donde quiere estar.

Metodología para evaluación sostenibilidad

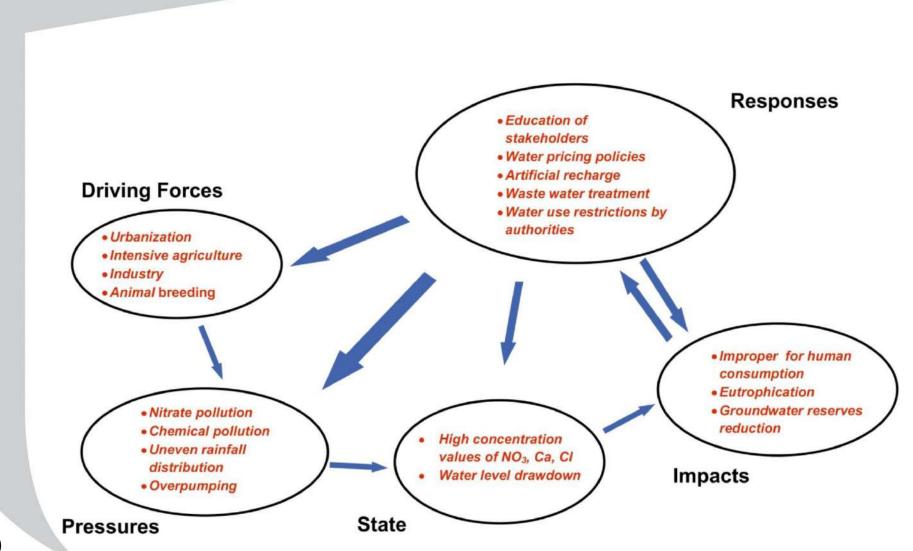
Fase 2

 Evaluación de la sostenibilidad

Fase 3

 Validación y análisis

Fase 1


 Contextualización y desarrollo de la metodología

Evaluación de la sostenibilidad

- Paso 1: Establecer y definir el marco conceptual de la sostenibilidad.
- Paso 2: Definir los objetivos de la evaluación.
 - ¿Qué se va a evaluar?
 - ¿Por qué se va a evaluar?
 - ¿Para qué se va a evaluar?
 - ¿Para quién?
- Paso 3: Definir y caracterizar el sistema a evaluar.
- Paso 4: Relevamiento inicial de datos. Diagnóstico preliminar.
- Paso 5: Definición de las dimensiones de análisis.
- Paso 6: Definición de categorías de análisis, descriptores e indicadores

- Definición de agricultura sostenible
 - Ser ecológicamente adecuado
- Dimensión u objetivo: Ecológico.
 - ¿Qué quiere decir? Que preserve los recursos naturales (intra y extra prediales)
- Categoría de análisis: Suelo
 - ¿Qué aspecto del suelo debo preservar? Su calidad o atributos físicos, químicos y biológicos.
 - Químicos: Mantenimiento de la "dotación" de nutrientes.
- Balance de nutrientes (N,P,K). Diferencia entre lo extraído en la cosecha y lo suministrado.
 - Nutriente elegido: fósforo.
 - Indicador: .Kg P.ha-1 x año.

Evaluación de la sostenibilidad

- Paso 7: Estandarización y ponderación de los indicadores.
- Paso 8: Análisis de la coherencia de los indicadores con el objetivo planteado.

Indicadores<---->Objetivos

- Paso 9: Construcción o elección de los instrumentos o metodologías adecuadas. Obtener datos derivados de preguntas a los interesados o aspectos socioculturales
- Paso 10: Recoger los datos y calcular los indicadores.

Paso 11: Análisis y presentación de los resultados.

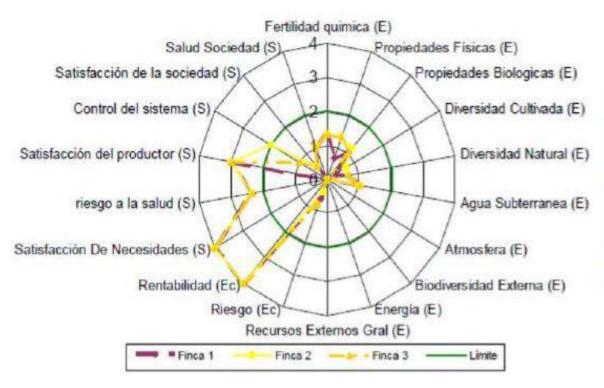


Diagrama de telaraña.
representando los
indicadores ecológicos (E),
económicos (Ec) y sociales
(S) de 3 fincas hortícolas que
producen bajo invernáculo
del Partido de La Plata,
Buenos Aires, Argentina.
(Blandi et al., 2009)

Evaluación de la sostenibilidad

- Paso 12: Determinación de los puntos críticos a la sostenibilidad del sistema de interés.
- Paso 13: Replantearse si los indicadores elegidos, o la metodología empleada, fue la correcta.
- Paso 14: Propuestas de corrección y/o monitoreo.

Construcción Matriz de Indicadores de sustentabilidad – Magdalena Medio , Agua de Dios– Asopricor, 2015.

Indicadores	Calidad producto final.	Monitoreos en el cultivo.	Planeación estrategica de la producción	Uso eficiente y conservación del Agua.	Contenido de MO en el suelo.	Vivienda digna.	Cumplimiento estándares de calidad.	Rentabilidad.	Vías de acceso a la finca.
Fincas)				
La Fortuna	0	-1	-1	1	0	1	-2	0	2
Las Lagunas	-2	-1	-1	1	-1	1	-2	-1	2
La Palma	-1	-1	-1	-2	-1	-1	-2	-2	-2
El corazón	0	-1	-1	0	-1	-2	-2	-1	1
La Fortuna	0	-1	-2	0	-2	1	-2	-1	-2
Los Cristales	0	-1	-1	1	1	1	-2	-2	-1
El Reten	0	-1	0	-1	0	0	-2	-2	2
Albania	1	-1	-1	o	-1	-1	-2	-1	0
Promedio por Indicador	-0,25	-1	-1	0	-0,625	0	-2	-1,25	0,25

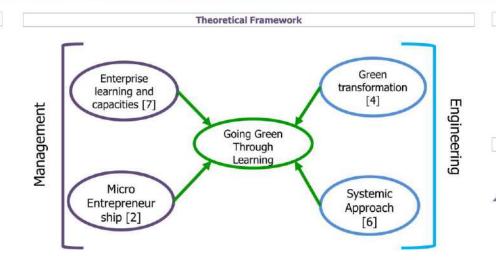
Evaluación de la sustentabilidad ASOCAMED

Caso desarrollado por Ingenieros sin Fronteras ISF

Microenterprises going green: Learning and green measurement in Cundinamarca region

Andrés Esteban Acero López, Julia Helena Díaz Ramírez Universidad de los Andes, Colombia

Context Con



How can we help microenterprises to go green through learning?

SME and Environmental Development

- Different perspectives for developing countries [5]
- Emerging market opportunities [6]
 Environmental stewardship [6]

Learning Process and Innovation The challenge is to increase the degree of novelty of innovations through improving their ability to exploit knowledge[1]

Model Methodology

Participative

construction

1 Diagnosis Proposal

- Effects of green transformation in learning process
- Competitivity and differentiation by green transformation


Expected Results

An instrument board to help micro enterprises to go greener than before.

Contribute to develop learning capabilities in micro businesses to impact local or regional development with sustainability elements.

en

UNIDAD DE NEGOCIOS VERDES

¿Qué son los negocios verdes?

Es una metodología que busca fortalecer las Capacidades de Innovación y emprendimiento de las micros, pequeñas y medianas empresas generando en ellas unidades de negocios rentables, ambientalmente y socialmente responsables e integrantes dentro de una red que le permite la sostenibilidad del negocio.

Dentro de los ejes de trabajo está:

Ecoturismo y/o turismo rural Emprendimientos sostenible Agroecología y Cambio Climático Mercados Verdes.

Educación

¿CÓMO SE HACE?

Diagnóstico y evaluación

Fases de acompañamiento

Fortalecimiento

Formulación del proceso de fortalecimiento

¿Cómo es el acompañamiento?

• El fortalecimiento de Negocios Verdes se desarrolla por medio de la participación directa con las comunidades y empresarios en los cuales se busca la identificación de las oportunidades y fortalezas del sector al que pertenece y cuáles son las debilidades y amenazas a los que está expuesto.

¿En qué se hace el acompañamiento?

En los siguientes aspectos dependiendo de las prioridades se trabaja una o varias, a saber: Desarrollo de los estratégicos de la empresa

- Mejoramiento de Rentabilidad
- Producción más limpia
- Seguridad y salud en el trabajo
- Mercadeo y marcas territoriales
- Energías sostenibles

¿Qué incluye el acompañamiento?

- Luego de la identificación de las problemáticas se inicia un proceso de gestión de innovación en búsqueda de solución de las mismas por medio de la Investigación Acción Participativa (IAP) y en la gestión de la vinculación de actores que permitan la construcción de la red que permita la sostenibilidad de las empresas
- La intervención incluye:
 - Procesos de empoderamiento
 - Asesoría profesional a las empresas
 - Identificación y gestión con los diferentes actores de la región.

Universidad de

ACOMPAÑAMIENTO Y FORTALECIMEINTOS GUAVIO 2014 - 2015

EL proyecto Fortalecimiento de Negocios Verdes en la región del Guavio que se desarrollo en los municipios de Guasca, Gachetá y Junín, que buscó fortalecer las capacidades de innovación emprendimiento por medio de modelo de Negocios Verdes desarrollado en el año 2014 y 2015.

Organizaciones

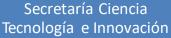
Parque Científico de Innovación Social

Academia

UNIMINUTO

58

Puntos de Atención



Ingenieros Sin Fronteras Colombia UNIANDES-UNIMINUTO

PARQUE CIENTÍFICO

DE INNOVACIÓN SOCIAL

Gobernación de Cundinamarca

Gobernación de UNDINAMARCA

Academia

Sector público

¿Cómo se desarrolló?

Encuentro para el establecimiento de relaciones marzo-abril 2014

Laboratorio Soluciones Verdes 7 iunio 2014

Taller Innovación-Acción desde los colegios Mayo 2014

Curso, semillero, tesis Ingenieros Sin Fronteras Colombia. Espacios de participación

Definir por medio de la acción y desde capacidades y necesidades reales modelos de negocios verdes regionales.

Espacios de diseño participativo agosto-noviembre 2014

Cierre y resultados 10 diciembre 2014

Taller: ¿Cómo convertir mi unidad productiva en negocio verde? octubre-noviembre 2014

Seminario en emprendimiento sostenible 28 mayo 2014

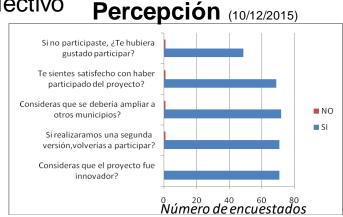
Resultados

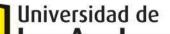
- **37**/35 unidades productivas
- **370**/350 estudiantes décimo y once.

http://innverde.hol.es/mobile/

- 41 estudiantes universitarios UNIANDES UNIMINUTO.
- 4 colegios municipales.
- 7 tesis ingeniería industrial Universidad de los Andes.

Página web como testimonio colectivo


http://innverde.hol.es/


Productos de investigación

Mapas geo-referenciados

Fortalecimiento relaciones Academia-Sector Público-Comunidad

EMPRENDIMIENTOS EMPRENDEVERDE

Es una comercializadora Social que genera oportunidades de compra a estudiantes y comunidades rurales en los municipios de Cundinamarca.

Apoya iniciativas que impactan positivamente al medio ambiente. Desde el 2014 se han apoyado 34 emprendimientos de estudiantes y graduados que actualmente son proveedores de UNIMINUTO.

- Promueve la primera facturación de los emprendedores.
- •Desarrolla la identidad visual de la empresa, diseña sus empaques y etiquetas.
- •Es una iniciativa de Ingenieros Sin Fronteras Colombia

AGROECOLOGÍA Y CAMBIO CLIMÁTICO

FORTALECIMIENTO DE LA CAPACIDAD DE ADAPTACIÓN AL CAMBIO CLIMÁTICO EN TERRITORIOS PRODUCTORES DE AGUA EN CUNDINAMARCA

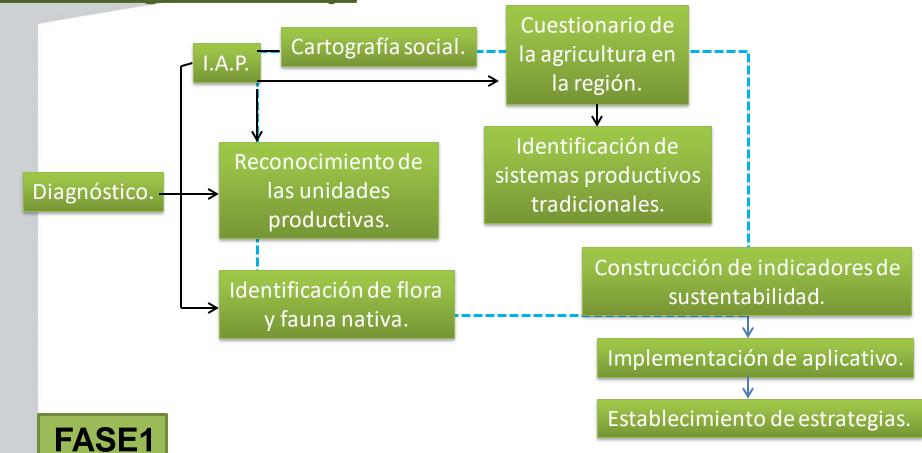
Lugar de intervención: Municipio Junín

Inspección Claraval, Veredas: Aposentos, Arenal, Guarumo, La Aldea y Terama.

Inspección Chuscales, veredas: Carrizal, Colombia, Córdoba, Chorrillos, El Carmen y Maracaibo.

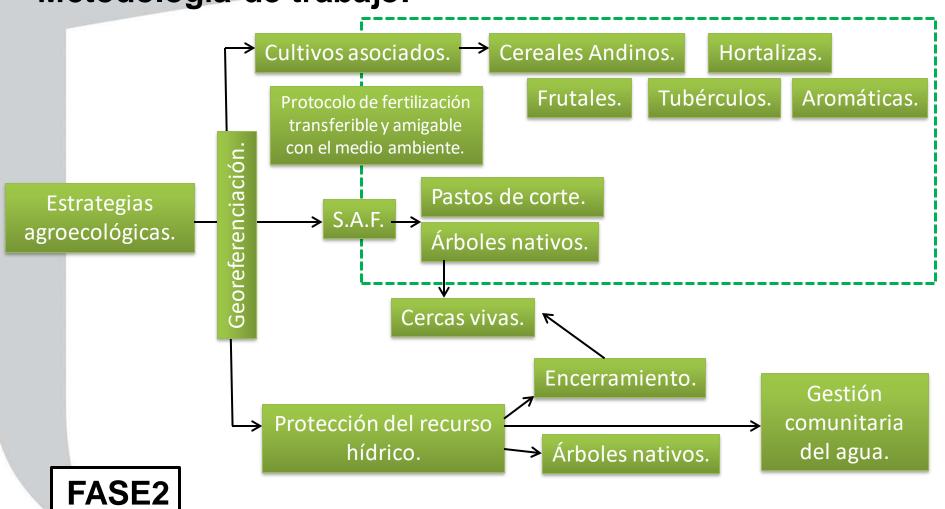
Foto. Inspección de Claraval. Imagen: Luis

Foto. Inspección de Chuscales. Imagen: Luis Sánchez.



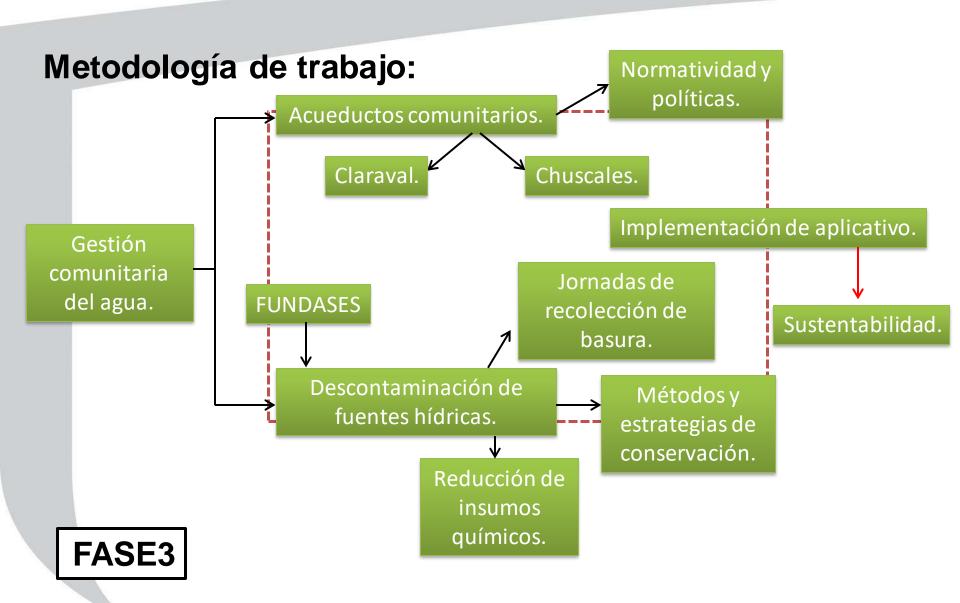
Actores y Aliados:

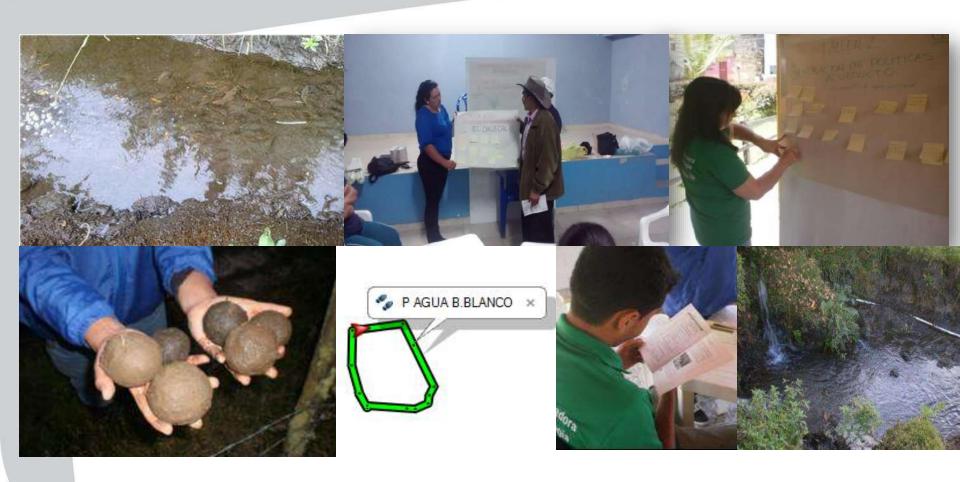
Metodología de trabajo:



Imágenes. Fase 1. Fotos: Equipo Cambio Climático. 2014.

Metodología de trabajo:





Imágenes. Fase 2. Fotos: Equipo Cambio Climático. 2014.

Imágenes. Fase 3. Fotos: Equipo Cambio Climático. 2014.

Resultados:

ESTRATEGIA	PRODUCTOS	BENEFICIOS					
SISTEMAS AGROFORESTALES. 13 CULTIVOS ASOCIADOS.	Maderables, Carne de bovino, leche y sus derivados.	 Reducción de danos ar suelo por pisoceo. Enriquecimiento de la dieta del animal. Reducción de costos de producción. Independencia de insumos externos. Incentivo a la presencia de flora y fauna nativa. Reducción de stress en los animales. Estimulo a la presencia de fauna benéfica. 					
23	Hortalizas, tubérculos, frutales, cereales andinos y aromáticas.	 Reducción de insumos químicos en la producción. Participación de la familia en el mantenimiento de la huerta. Conservación y fortalecimiento de la estructura del suelo. Producción escalonada y sostenible. 					
PROTECCIÓN DE FUENTES HÍDRICAS. 10	Áreas protegidas, siembra de árboles nativos y generación de propuestas de acueductos comunitarios.	 Reducción del ingreso de animales a los puntos de agua. Practicas de biorremediación transferibles a las comunidades. Generación de conciencia y cuidado al recurso hídrico. Conservación del recurso para las futuras generaciones. 					

Resultados:

Imágenes. Resultados. Fotos: Equipo Cambio Climático. 2014.

Universidad de

CENTROS DE INVESTIGACIÓN CIET RURAL

El CIET rural, en función de un desarrollo integral desde la Ingeniería social propiamente, permite la construcción de soluciones colectivas que respondan a la complejidad de los problemas que afectan a la sociedad colombiana: "Busquemos todas las soluciones parciales, sencillas, prácticas, para que brote de ellas la solución colectiva" (García, citado por Jaramillo, 1984).