

SUBDIRECCION DE GESTION AMBIENTAL

CALIDAD DE LAS FUENTES HIDRICAS SUPERFICIALES DE LA JURISDICCION DE CORPOGUAVIO

Informe consolidado de seguimiento a la calidad de las fuentes hídricas superficiales de la Jurisdicción de Corpoguavio entre los años 2007 y 2009.

SUBDIRECCIÓN DE GESTIÓN AMBIENTAL – PROGRAMA MANEJO INTEGRAL DEL RECURSO HÍDRICO MAYO DE 2010

SUBDIRECCION DE GESTION AMBIENTAL

Presidencia de la República de Colombia

Dr. Álvaro Uribe Vélez: Presidente Nacional

Ministerio del Ambiente, Vivienda y Desarrollo Territorial - MAVDT

Dr. Carlos A. Costa. Ministro

Director General CORPOGUAVIO

Dr. Marcos Alberto Barreto García

Subdirector de Gestión Ambiental

Dr. Raimundo Tamayo Medina

Equipo Técnico Programa Manejo Integral del Recurso Hídrico -PMIRH

Bióloga Diana Astrid Martínez Ceballos – Coordinadora PMIRH

Microbióloga Edith Liliana Garzón Hidalgo – Profesional PMIRH

SUBDIRECCION DE GESTION AMBIENTAL

TABLA DE CONTENIDO

1. ANTECEDENTES	6
2. OBJETIVO	6
3. ESTUDIOS REALIZADOS POR CORPOGUAVIO	6
4. FUENTES HÍDRICAS OBJETO DE SEGUIMIENTO	
5. RESULTADOS DE SEGUIMIENTO A PARÁMETROS FISICOQUÍMICOS EN FUENTES	
RECEPTORAS DE VERTIMIENTOS	
5.1. RÍO SIECHA – MUNICIPIO DE GUASCA	
5.1.1. Calidad General	9
5.1.2. Seguimiento a objetivos de Calidad	. 12
5.2. QUEBRĂDA EL ARENAL – MUNICIPIO DE JUNÍN	
5.2.1. Calidad General	
5.2.2. Seguimiento a objetivos de Calidad	
5.3. RÍO GAZAMUMO – MUNICIPIO DE MEDINA	
5.3.1. Calidad General	
5.3.2. Seguimiento a objetivos de Calidad	
5.4. RÍO GUÁVIO – MUNICIPIO DE GACHETÁ	
5.4.1. Calidad General	
5.4.2. Seguimiento a objetivos de Calidad	
5.5. RÍO NEGRO – MUNICIPIO DE FÓMEQUE	
5.5.1. Calidad General	
5.5.2. Seguimiento a objetivos de Calidad	. 28
5.6. QUEBRADA GRANDÉ – MUNICIPIO DE UBALÁ	
5.6.1. Calidad General	
5.6.2. Seguimiento a objetivos de Calidad	. 32
5.7. QUEBRADA EL CURÓ – MUNICIPIO DE GAMA	
5.7.1. Calidad General	
5.7.2. Seguimiento a objetivos de Calidad	. 36
5.8. EMBALSE DEL GUAVIO- MUNICIPIO DE GACHALÁ	
5.8.1. Calidad General	
5.8.2. Seguimiento a objetivos de Calidad	
6 INDICE DE CALIDAD DEL AGUA (ICA)	
ANEXOS	. 47

SUBDIRECCION DE GESTION AMBIENTAL

INDICE DE TABLAS

Tabla 1. Fu	uentes hídricas superficiales objeto de monitoreo 2007-2009	8
Tabla 2. Fu	uentes hídricas superficiales con objetivo de calidad – Jurisdicción Corpoguavio	9
Tabla 3. Pa	arámetros fisicoquímicos en el Río Siecha – Municipio de Guasca	10
Tabla 4. Se	eguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Siecha –	
	Municipio de Guasca.	13
Tabla 5. Pa	arámetros fisicoquímicos en la Quebrada El Arenal – Municipio de Junín	14
Tabla 6. Se	eguimiento a parámetros fisicoquímicos con objetivo de calidad en la Quebrada	
	Arenal – Municipio de Junín.	17
Tabla 7. Pa	arámetros fisicoquímicos en el Río Gazamumo – Municipio de Medina	18
Tabla 8. Se	eguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río	
	Gazamumo – Municipio de Medina.	21
Tabla 9. Pa	arámetros fisicoquímicos en el Río Guavio – Municipio de Gachetá	22
Tabla 10. S	Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Guavio –	
	Municipio de Gachetá	25
	Parámetros fisicoquímicos en el Río Negro – Municipio de Fómeque	26
Tabla 12. S	Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Negro	
	Municipio de Fómeque.	29
	Parámetros fisicoquímicos en el Quebrada Grande – Municipio de Ubalá	30
Tabla 14. S	Seguimiento a parámetros fisicoquímicos con objetivo de calidad en la Quebrada	
	Grande – Municipio de Ubalá.	33
	Parámetros fisicoquímicos en el Quebrada El Curo – Municipio de Gama	34
Tabla 16. S	Seguimiento a parámetros fisicoquímicos con objetivo de calidad en la Quebrada El	
	Curo- Municipio de Gama	37
	Parámetros fisicoquímicos en el Embalse del Guavio – Municipio de Gachalá	38
Tabla 18. S	Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Embalse del	
	Guavio – Municipio de Gachalá.	41
Tabla 19. F	Resultados del ICA para las fuentes hídricas superficiales de la jurisdicción de	
	Corpoguavio.	43

SUBDIRECCION DE GESTION AMBIENTAL

INDICE DE FIGURAS

Figura 1.	Comportamiento de parámetros fisicoquímicos en la Quebrada Arenal – Municipio de Junín.	15
Figura 3.	Comportamiento de parámetros fisicoquímicos en el Río Gazamumo — Municipio de Medina.	19
Figura 4.	Comportamiento de parámetros fisicoquímicos en el Río Guavio – Municipio de Gachetá.	23
Figura 5.	Comportamiento de parámetros fisicoquímicos en el Río Negro — Municipio de Fómeque	27
Figura 6.	Comportamiento de parámetros fisicoquímicos en La Quebrada Grande – Municipio de Ubalá	31
Figura 7.	Comportamiento de parámetros fisicoquímicos en La Quebrada El Curo – Municipio de Gama.	35
Figura 8.	Comportamiento de parámetros fisicoquímicos en el Embalse del Guavio – Municipio de Gachalá	39

SUBDIRECCION DE GESTION AMBIENTAL

1. ANTECEDENTES

En cumplimiento de la misión ambiental establecida en la Ley 99 de 1993 y de las normas vigentes para la gestión del recurso hídrico, CORPOGUAVIO adelanta las labores necesarias para el conocimiento y el seguimiento a la calidad de las fuentes hídricas superficiales de su jurisdicción, con énfasis en las fuentes abastecedoras de acueductos y receptoras de vertimientos urbanos.

La labor se inicia durante el año 2004 permitiendo en los primeros años identificar y priorizar las fuentes que por sus características requieren seguimiento, por lo cual en los últimos tres años se han adelantado muestreos sistemáticos en dichas fuentes.

2. OBJETIVO

El presente informe, tiene como objetivo presentar en forma sucinta y analítica los resultados de los monitoreos de calidad y cantidad del recurso hídrico superficial realizados en la jurisdicción de Corpoguavio.

3. ESTUDIOS REALIZADOS POR CORPOGUAVIO

Los siguientes son los estudios de calidad y/o cantidad realizados a la fecha Corpoguavio:

• Contrato No. 108 de 2004: "Caracterización de la calidad del agua de las cuencas objeto de cobro de la tasa retributiva".

<u>Contratista responsable:</u> Gerardo Nava Tovar (Químico Universidad Nacional de Colombia).

Objeto: conocer y valorar la calidad hídrica y el grado de contaminación que presentan las cuencas que son objeto de cobro de la tasa retributiva en CORPOGUAVIO, en su cuenca alta, media y baja.

<u>Alcance</u>: se realizó caracterización de 49 puntos distribuidos en las cuencas de los ríos Siecha (Siete Puntos), Guavio (22 Puntos), Negro (13 puntos), y el Gazamumo (siete puntos).

<u>Análisis</u>: A las muestras tomadas en cada uno de los puntos se les realizo análisis Fisicoquímico y microbiológico de los siguientes parámetros: Temperatura, Demanda Bioquimica de Oxígeno (DBO₅), Demanda Química de Oxigeno (DQO), Sólidos suspendidos totales (SST), Coliformes Totales, Coliformes Fecales, Ph, Oxigeno Disuelto, Turbiedad.

 Contrato de consultaría No. 146 de 2006: "Análisis de calidad y cantidad de agua de los ocho municipios de la Corporación Autónoma Regional del Guavio -CORPOGUAVIO"

Consultoría responsable: Consulta A&S CIA. LTDA. Ingenieros Consultores.

SUBDIRECCION DE GESTION AMBIENTAL

 Contrato 175 DE 2007: "Realizar una campaña de monitoreo de aguas que incluye análisis de calidad y cantidad del recurso hídrico en ocho fuentes hídricas superficiales de la jurisdicción y la interpretación de la información recopilada de los muestreos efectuados para los puntos definidos".

Consultoría responsable: Compañía de consultoría ambiental Ltda Alcance: Diagnosticar la calidad del agua de las fuentes receptoras de vertimientos de los ocho (8) centros urbanos de la jurisdicción mediante la realización de campañas de aforo y muestreo en cada uno de los treinta y tres (33) sitios de muestreo identificados. Los vertimientos, objeto del contrato, están ubicados en los Ríos Siecha, Aves, Gazaguancito, Negro y Guavio; quebradas El Arenal, Caño Muerto, Grande, El Curo; y el Embalse del Guavio. Se incluyen los siguientes análisis: Calculo del índice de calidad del agua para cada cuerpo receptor a partir de los datos obtenidos en campo y los reportados por el laboratorio y un mapa de calidad hídrica para la jurisdicción.

Contrato 578 de 2008: "Análisis de calidad y cantidad del recurso hídrico en veintiséis (26) fuentes hídricas superficiales de la jurisdicción de CORPOGUAVIO" Consultoría responsable: Consorcio Calidad Guavio Alcances: Realizar muestreo en 26 vertimientos de agua con 53 sitios de aforo y evaluar 19 sistemas rurales de abastecimiento de agua, sin tratamiento en algunos Labor desarrollada en los 8 municipios de la jurisdicción de CORPOGUAVIO: Guasca, Fómeque, Junín, Medina, Ubalá, Gacheta, Gama y Gachalá. El desarrollo del estudio incluyo las siguientes actividades: Consolidado de los aforos de caudal en el total de las estaciones; consolidado de los análisis de las variables fisicoquímicas y bacteriológicas en cada uno de los sitios de de los índices de calidad del agua (ICA), índices de muestreo: cálculo contaminación (ICOMO, ICOSUS, ICOTRO) e índice de Biodegradabilidad (IB); análisis de aptitud de uso de acuerdo con la normatividad vigente (Decreto 1594 de 1984) para cada estación de muestreo; cálculos de de cargas contaminantes para cada estación de muestreo.

4. FUENTES HÍDRICAS OBJETO DE SEGUIMIENTO

Se presenta el consolidado de calidad y cantidad del agua de las fuentes superficiales de la Jurisdicción de Corpoguavio considerando los resultados de los estudios realizados entre los años 2007, 2008 y 2009, y teniendo en cuenta la continuidad en los sitios y parámetros de muestreo.

Es importante aclarar que Corpoguavio ha realizado monitoreo a fuentes hídricas superficiales con importancia por ser abastecedoras de acueductos urbanos, acueductos veredales o ser receptoras de vertimientos puntuales de las zonas urbanas de los Municipios.

Las fuentes que han sido objeto de monitoreo y el uso de las mismas se presenta en el siguiente cuadro:

SUBDIRECCION DE GESTION AMBIENTAL

Tabla 1. Fuentes hídricas superficiales objeto de monitoreo 2007-2009

Características de	Nombre de la Fuente	Municipio (s)	М	onitoreo (Si/N	o)
Uso			2007	2008	2009
	Río Moquentiva	Gachetá	No	No	Si
	Qda. Las Pavas	Gacrieta	No	No	Si
	Qda El Curo	Gama	No	No	Si
Abastecimiento de	Río Negro	Fómeque	No	No	Si
acueductos urbanos	Qda Negra	Forneque	No	No	Si
	Qda. Grande	Ubalá	No	No	Si
	Qda. Chinagocha	Junín	No	No	Si
	Qda. Bellavista	Gachalá	No	No	Si
	Qda. Monteoscuro	Guasca	No	No	Si
	Qda. El salitre	Guasca	No	No	Si
	Qda. La Corita	Gama	No	No	Si
Abastecimiento de acueductos rurales	Qda. Caquinal		No	No	Si
	Qda. Raudal	Fomeque	No	No	Si
	Qda. La cabra		No	No	Si
	R. Gazaduje	Medina	No	No	Si
	Qda. Las delicias	Ubalá	No	No	Si
	Qda. Negra	Junín	No	No	Si
	Río Siecha	Guasca	Si	Si	Si
	Río Aves	Guasca	Si	Si	Si
	Río Guavio	Gachetá	Si	Si	Si
	Qda El Curo	Gama	Si	Si	Si
Receptora de	Río Negro	Fómeque	Si	Si	Si
vertimientos urbanos	Río Gazamumo	Medina	Si	Si	Si
	Qda. Grande	Ubalá	Si	Si	Si
	Qda El Gusano	Ubala	Si	Si	Si
	Qda. Arenal	Junín	Si	Si	Si
	Embalse del Guavio	Gachalá	Si	Si	Si
Otras fuentes de	Río Blanco	Fómeque	No	No	Si
interés	Río Trompetas	Ubalá	No	No	Si

5. RESULTADOS DE SEGUIMIENTO A PARÁMETROS FISICOQUÍMICOS EN FUENTES RECEPTORAS DE VERTIMIENTOS

A continuación se presentan los resultados del seguimiento a las fuentes hídricas receptoras de vertimientos puntuales de las zonas urbanas de la jurisdicción.

Dicho seguimiento a la calidad incluye tanto el análisis de los parámetros establecidos por el Decreto 3100 de 2003 (reglamenta el cobro de la tasa retributiva por vertimientos puntuales) como los parámetros definidos en los objetivos de calidad fijados por Corpoguavio mediante Resolución N° 142 del 24 de Abril de 2008:

SUBDIRECCION DE GESTION AMBIENTAL

Tabla 2. Fuentes hídricas superficiales con objetivo de calidad – Jurisdicción Corpoguavio

Municipio	Cuerpo de agua para Objetivo de Calidad	Microcuenca	Subcuenca	Cuenca
Guasca	Río Siecha	Embalse del Tominé	Río Bogotá	Río Magdalena
Junín	Quebrada El Arenal			_
Gama	Quebrada El Curo			
Gahetá	Río Guavio	Río Guavio	Río Upía	
Ubalá	QuebradaGrande			Río Meta
Gachalá	Embalse del Guavio			
Medina	Río Gazamumo	Río Gazáunta	Río Humea	
Fómeque	Río Negro	Río Guatiquía	Rio Fiulliea	

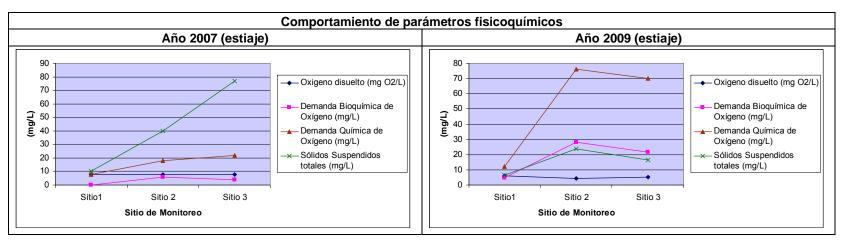
El Anexo 1 presenta los objetivos de calidad definidos para cada tramo de las fuentes hídricas superficiales citadas.

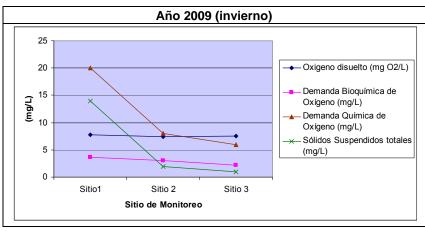
En el seguimiento a los objetivos de calidad es importante aclarar que éstos tienen como plazo el año 2020 y para el caso particular del Río Siecha se articulan a los objetivos de calidad definidos en el marco del Plan de Ordenamiento de la cuenca del Río Bogotá (cuenca alta).

Dichos objetivos se definieron en el año 2008 y hasta ahora los Prestadores de Servicio de Alcantarillado de la jurisdicción -uno de los principales sectores aportantes de carga contaminante- han iniciado la ejecución de las actividades definidas en sus planes de saneamiento y manejo de vertimientos -PSMV-, por lo cual es probable que no sea evidente aún la detección de los parámetros dentro del rango o el límite definido como objetivo de calidad.

5.1. RÍO SIECHA – MUNICIPIO DE GUASCA

5.1.1. Calidad General




Tabla 3. Parámetros fisicoquímicos en el Río Siecha – Municipio de Guasca.

		Año	2007 (est	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)				
Parámetro	Unidad	Sitio	de mues	streo	Siti	o de mues	treo	Siti	o de muest	reo		
		1	2	3	1	2	3	1	2	3		
Temperatura	°C	10	13.8	15.1	10.2	17.8	18.4	11.2	12.6	12.2		
рН	Unidades	7.87	7.31	7.38	6.18	8.16	7.3	7.38	7.38	7.72		
Oxigeno disuelto	mg O ₂ /L	7.67	7.78	7.77	6.02	4.19	5.15	7.77	7.43	7.48		
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	<2	6	4	4.96	28.1	21.6	3.66	3	2.16		
Demanda Química de Oxígeno (DQO)	mg/L	8	18	22	12	76	70	20	8	6		
Sólidos Suspendidos totales (SST)	mg/L	10	40	77	6.5	24	16.5	14	2	1		
Sólidos Totales	mg/L	24	64	124	31.43	115.7	92.86	55.71	51.43	48.57		
Turbiedad	NTU	8.9	25	65	1.44	44.12	33.1	8.11	10.39	15.78		
Conductividad	μs/cm	195	60	90	19.34	55.6	43.9	13.66	24	27.4		
Nitritos	mg NO₂/L	0.001	0.001	0.001	0.05	0.2	0.21	0.06	0.07	0.07		
Nitratos	mg NO₃/L	0.15	0.15	0.15	1	3.4	3.3	< 0.4	0.4	0.3		
Ortofosfatos	mg PO ₄ /L	0.3	0.46	0.12	0.11	0.46	0.24	0.14	0.21	0.88		
Fósforo Total	mg P/L	0.12	0.18	0.16	0.05	0.2	0.11	0.16	0.16	0.16		
Coliformes Totales	NMP 100/ml	11000	110000	110000	210	240	>1100					
Coliformes Fecales	NMP 100/ml	4300	15000	11000								
Caudal	m³/seg 54 281.2 457.5 106.84 248.4 455.2 2730 2963.2 3035.											
Sitios de monitoreo		1. Rio Siecha Zona de Cuenca Alta. 2. R. Siecha antes de la desembocadura del Río Aves. 3. R. Siecha Límite Jurisdiccional, antes del Embalse de Tominé.										

Figura 1. Comportamiento de parámetros fisicoquímicos en el Río Siecha - Municipio de Guasca.

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados:</u> El comportamiento de la DBO₅ denota incremento en el muestreo de estiaje del año 2009 respecto al del año 2007, en las tres estaciones (cuenca alta, media y baja) y disminución significativa durante el muestreo de invierno, debido a la dilución de la materia orgánica por el incremento del caudal.

La demanda química de oxígeno (DQO) se presenta con incremento en época de estiaje en las estaciones de cuenca media y baja, luego de los aportes de los vertimientos de la zona urbana, lo que indica una mayor presencia de material químicamente oxidable. Sin embargo en época de invierno los niveles disminuyen en estos dos sitios y por el contrario aumentan en la cuenca alta, lo cual puede ser producto de los residuos químicos de la actividad agropecuaria que son llevados a la fuente por la escorrentía. Igual comportamiento se reporta para los SST.

Durante las dos campañas de estiaje y la campaña de invierno la concentración de oxígeno disuelto se mantiene estable en toda la fuente hídrica, lo que representa las condiciones óptimas para el desarrollo y mantenimiento de la vida acuática.

5.1.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

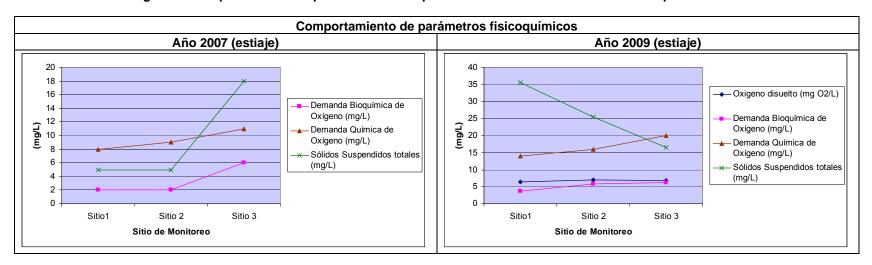
Tabla 4. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Siecha – Municipio de Guasca.

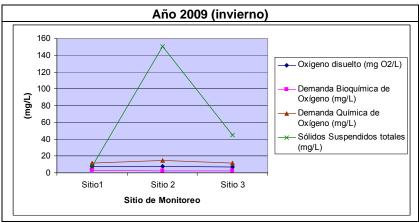
		Ob	jetivos de Calid	dad	Α	ño 2007 (estia	je)	Α	ño 2009 (estia	je)	Añ	2009 (Invie	rno)
Parámetro	Unidad	Cuenca alta (Nacimiento hasta antes de Z.urbana)	Cuenca Cuenca baja media (Antes Z.ubana Z.mezcla hasta desp. Z.mezcla) municipal)	s	itio de muestre	eo	S	itio de muestr	eo	Sitio de muestreo			
					1	2	3	1	2	3	1	2	3
Temperatura	°C	+ 5° respecto	a la Temperat	ura ambiente	10	13,8	15,1	10,2	17,8	18,4	11,2	12,6	12,2
Temperatura ambiente	°C							12			12		14
рН	Unidades		Entre 5.0 y 9.0		7,87	7,31	7,38	6,18	8,16	7,3	7,38	7,38	7,72
Oxigeno disuelto	mg O₂/L	≥7			7,67	7,78	7,77	6,02	4,19	5,15	7,77	7,43	7,48
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	≤ 2	≤	5	<2	6	4	4,96	28,1	21,6	3,66	3	2,16
Sólidos Suspendidos totales (SST)	mg/L	< 20	< 3	30	10	40	77	6,5	24	16,5	14	2	1
Coliformes Totales	NMP/100ml		≤ 20000		11000	110000	110000	210	240	>1100			
Coliformes Fecales	NMP/100ml	≤ 2000			4300	15000	11000						
Nitritos	mg NO ₂ /L			10	0,001	0,001	0,001	0,05	0,2	0,21	0,06	0,07	0,07
Nitratos	mg NO₃/L			10	0,15	0,15	0,15	1	3,4	3,3	< 0.4	0,4	0,3
Sitios de monitoreo	1. Rio Siecha	Zona de Cuend	ca Alta. 2. R. S	echa antes de l	a desemboca	adura del Río A	ves. 3. R. Siech	na Límite Juris	diccional, ante	s del Embalse	de Tominé.	•	1

SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: Los valores de la DBO₅ no se encuentran dentro del rango definido para los objetivos de calidad durante la época de estiaje y es clara la necesidad de implementar las acciones para la reducción del aporte de materia orgánica a la fuente. Igualmente sucede con la carga microbiana (Coliformes totales y fecales) y oxigeno disuelto.

5.2. QUEBRADA EL ARENAL – MUNICIPIO DE JUNÍN


5.2.1. Calidad General


Tabla 5. Parámetros fisicoquímicos en la Quebrada El Arenal – Municipio de Junín.

		Año	2007 (est	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)			
Parámetro	Unidad	Sitio	de mues	streo	Siti	o de muest	treo	Siti	o de muest	reo	
		1	2	3	1	2	3	1	2	3	
Temperatura	°C	16.6	16.2	15.8	18.7	14.4	16.7	14.9	16.5	20	
pН	Unidades	6.32	6.35	6.89	7.7	7.73	7.65	7.2	7.33	7.25	
Oxigeno disuelto	mg O₂/L	7.69	7.49	8.08	6.32	7.02	6.71	7.58	7.48	7.26	
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	< 2	< 2	6	3.76	5.73	6.31	3,41	2,66	2,46	
Demanda Química de Oxígeno (DQO)	mg/L	8	9	11	14	16	20	12	15	12	
Sólidos Suspendidos totales (SST)	mg/L	< 5	< 5	18	35.5	25.5	16.5	8	151	45	
Sólidos Totales	mg/L	16	30	66	68.57	78.57	94.29	60	170	115.71	
Turbiedad	NTU	1.3	4	7.8	13.54	24.07	21.5	9.8	58.8	60.6	
Conductividad	μs/cm	180	160	20	29.1	36.1	82.6	53	53	90.6	
Nitritos	mg NO ₂ /L	0.001	0.001	<0.001	0.06	0.07	0.06	0.06	0.09	0.1	
Nitratos	mg NO₃/L	0.15	0.15	0.15	0.1	2.5	5.3	0.1	1.5	2.5	
Ortofosfatos	mg PO ₄ /L	0.09	0.1	0.37	0.18	0.23	0.28	0.18	0.35	0.2	
Fósforo Total	mg P/L	0.04	0.05	0.015	0.14	0.09	0.12	0.14	0.34	0.24	
Coliformes Totales	NMP 100/ml	4300	39000	21000							
Coliformes Fecales	NMP 100/ml	230	150	110							
Caudal	m³/seg	3.5	6.3	26.6	7.43	6.3	26.6	28.41	105.7	340.03	
Sitios de monitoreo 1. Quebrada Arenal Cuenca Alta. 2. Quebrada el arenal antes del casco urbano del Municipio de Junin. 3 Quebrada el Arenal antes de desembocar al Río Guavio.										Junin. 3.	

Figura 1. Comportamiento de parámetros fisicoquímicos en la Quebrada Arenal - Municipio de Junín.

SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: Al realizar la comparación del comportamiento de esta fuente durante las tres campañas, se observa que los parámetros Demanda Química y Bioquímica de Oxígeno, aumentan desde la cuenca alta hacia la cuenca baja, a excepción del muestreo del año 2009, para la DBO, en el cual el mayor valor se reporta en la estación 1.

En las tres campañas de monitoreo el pH a lo largo de la fuente hídrica, presenta valores muy similares inclinándose hacia la neutralidad y manteniéndose dentro de los niveles que la mayoría de los organismos acuáticos requieren para sobrevivir.

Los sólidos suspendidos totales, presentan incremento en su concentración a lo largo de la corriente (excepto en el muestreo de segundo año), presentándose el mayor valor en la época de invierno de 2009, debido al arrastre de sedimentos por escorrentía.

5.2.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

Tabla 6. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en la Quebrada Arenal – Municipio de Junín.

		Ob	jetivos de Cali	dad	Α	ño 2007 (estia)	e)	A	ño 2009 (estia	je)	Añ	2009 (Invie	rno)
Parámetro	Unidad	Cuenca alta (Nacimiento hasta antes de Z.urbana)	Cuenca media (Antes Z.ubana hasta desp. Z.mezcla)	Cuenca baja (Desp. Z.mezcla hasta límite municipal)	s	itio de muestre	20	s	itio de muestro	eo	Sitio de muestreo		
					1	2	3	1	2	3	1	2	3
Temperatura	°C	+ 5° respecto	5° respecto a la Temperatura ambiente			16,2	15,8	18,7	14,4	16,7	14,9	16,5	20
Temperatura ambiente	°C					_		-	16		12	15,4	21,0
pН	Unidades	entre 6.5 - 8.5	Entre 5	5.0 y 9.0	6,32	6,35	6,89	7,7	7,73	7,65	7,2	7,33	7,25
Oxigeno disuelto	mg O ₂ /L	≥ 7			7,69	7,49	8,08	6,32	7,02	6,71	7,58	7,48	7,26
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	≤	: 2	≤ 5	< 2	< 2	6	3,76	5,73	6,31	3,41	2,66	2,46
Sólidos Suspendidos totales (SST)	mg/L	<u><</u> 20			< 5	< 5	18	35,5	25,5	16,5	8	151	45
Coliformes Totales	NMP/100ml	<u><</u> 1000		<u><</u> 20.000	4300	39000	21000						
Coliformes Fecales	NMP/100ml	<u><</u> 200			230	150	110						
Sitios de monitoreo	1. Quebrada	Arenal Cuenca	Alta. 2. Quebr	ada el arenal a	ntes del casc	urbano del Mu	inicipio de Jun	in. 3. Quebrad	la el Arenal ant	es de desemb	ocar al Rio Gua	avio.	

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados:</u> Los valores de la DBO₅ no se encuentran dentro del rango definido para los objetivos de calidad durante la época de estiaje e invierno en los puntos 1 y 2, presentando concentraciones cercanas al rango definido. Los coliformes totales y fecales registran valores fuera del rango definido para los objetivos de calidad solo durante el muestreo del año 2007 y presentando valores que cumplen con el objetivo de calidad en los muestreos de estiaje e invierno de 2009.

5.3. RÍO GAZAMUMO – MUNICIPIO DE MEDINA

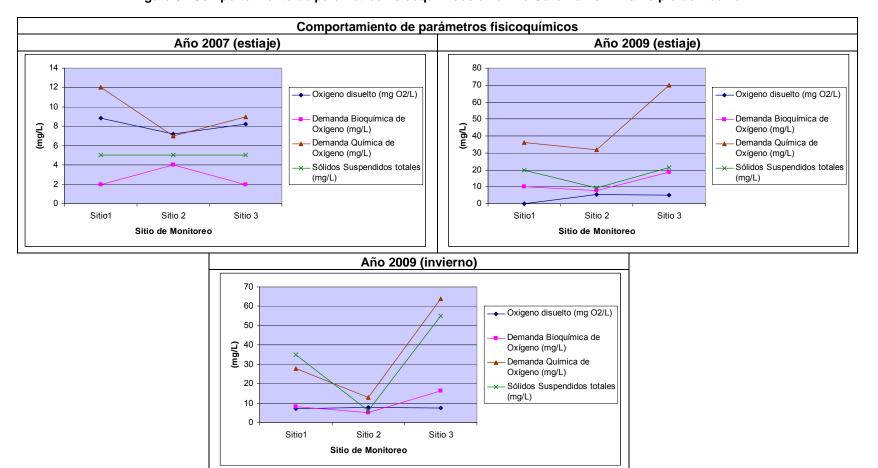

5.3.1. Calidad General

Tabla 7. Parámetros fisicoquímicos en el Río Gazamumo - Municipio de Medina.

		Año	2007 (est	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)			
Parámetro	Unidad	Sitio	o de mues	streo	Siti	o de mues	treo	Siti	o de muest	reo	
		1	2	3	1	2	3	1	2	3	
Temperatura	°C	22.2	24.4	27.8	25.3	27.6	30.4	22.8	23.7	23.7	
рН	Unidades	8.48	8.56	9.8	7.5	7.6	7.7	7.16	7.3	7.14	
Oxigeno disuelto	mg O₂/L	8.8	7.22	8.19	6,19	5.55	5.24	7.26	7.82	7.64	
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	< 2	4	< 2	9.93	7.71	18.46	8.22	5	16.3	
Demanda Química de Oxígeno (DQO)	mg/L	12.0	7.0	9	36	32	70	28	13	64	
Sólidos Suspendidos totales (SST)	mg/L	< 5	< 5	< 5	20	9.5	21.5	35	6	55	
Sólidos Totales	mg/L	56	88	108	88	67.14	115.71	112.86	34.29	128.57	
Turbiedad	NTU	1.7	1.5	1.2	17.7	10.95	17.52	40.2	7.73	20.59	
Conductividad	μs/cm	390	420	575	5.61	3.91	7.67	121.6	38.7	112.6	
Nitritos	mg NO ₂ /L	0.001	0.001	0.001	0.06	0.04	0.08	0.06	0.07	0.08	
Nitratos	mg NO₃/L	< 0.1	< 0.1	< 0.1	2.3	0.8	3.4	0.4	0.2	0.4	
Ortofosfatos	mg PO₄/L	0.06	0.05	0.07	0.19	0.2	0.29	0.2	0.09	0.2	
Fósforo Total	mg P/L	0.04	0.04	0.04	0.1	0.08	0.13	0.18	0.09	0.05	
Coliformes Totales	NMP 100/ml	1100	2000	2300							
Coliformes Fecales	NMP 100/ml	110	280	110							
Caudal	m³/seg	3854.7	2943.81	3722.92	4836.1	5812.22	12833.58	3584.10	17641.53	49958.07	
Sitios de monitoreo	1. Río Gazamumo cuenca alta 2. Río Gazamumo antes del Caño Muerto (o caño Picho) que conduce las aguas residuales del Municipio 3. Río Gazamumo zona de Playas										

Figura 3. Comportamiento de parámetros fisicoquímicos en el Río Gazamumo - Municipio de Medina.

SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: Las concentraciones de parámetros como la Demanda Química de Oxigeno, la Demanda Bioquímica de Oxigeno y los Sólidos Suspendidos Totales, aumentan en la medida que se avanza por la hidrolínea del río, sin embargo, la estación 2 reporta valores menores que en las dos estaciones restantes. El aumento de caudal es debido a la unión entre el río Gazamumo y el rio Gazatavena. El pH en las campañas del año 2009 se mantuvo relativamente estable, evidenciando tendencia a la neutralidad.

Al comparar los resultados de coliformes totales y fecales, en las tres campañas, se observa que a medida que se desciende por la fuente hídrica su valor aumenta, especialmente en el punto tres; este aumento se registró especialmente en el muestreo de invierno de 2009, posiblemente a causa de las descargas de agua residual del municipio de Medina y a las actividades antrópicas que se observan en la zona.

5.3.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

Tabla 8. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Gazamumo – Municipio de Medina.

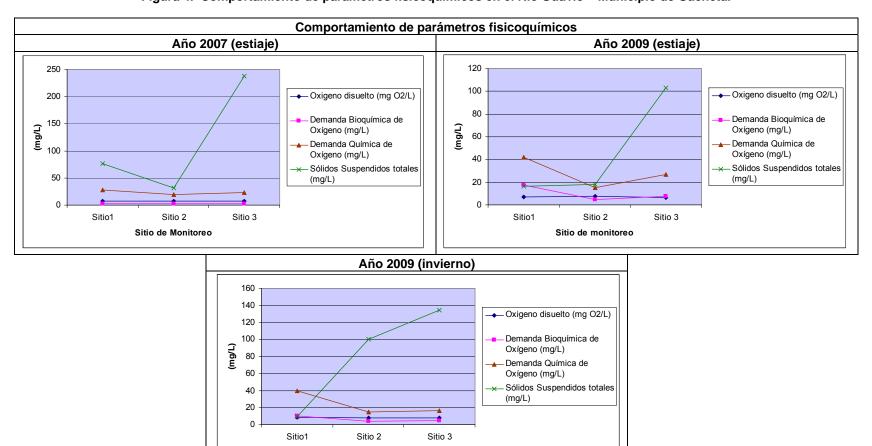
		Ob	jetivos de Cali	dad	A	ño 2007 (estia	je)	A	ño 2009 (estia	je)	Año 2009 (Invierno)		
Parámetro	Unidad	Cuenca alta (Nacimiento hasta antes de Z.urbana)	Cuenca media (Antes Z.ubana hasta desp. Z.mezcla)	Cuenca baja (Desp. Z.mezcla hasta límite municipal)	S	itio de muestr	eo	Sitio de muestreo			Sitio de muestreo		
					1	2	3	1	2	3	1	2	3
Temperatura	°C	± 5° respecto a la Temperatura ambiente			22,2	24,4	27,8	25,3	27,6	30,4	22,8	23,7	23,7
Temperatura ambiente	°C										23	23,7	25
pН	Unidades	Entre 5.0 y 9.0 entre 6.5 y 8.5			8,48	8,56	9,8	7,5	7,6	7,7	7,16	7,3	7,14
Oxigeno disuelto	mg O ₂ /L		≥ 6,0		8,8	7,22	8,19	6,19	5,55	5,24	7,26	7,82	7,64
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L		≤ 5		< 2	4	< 2	9,93	7,71	18,46	8,22	5	16,3
Sólidos Suspendidos totales (SST)	mg/L	< 20			< 5	< 5	< 5	20	9,5	21,5	35	6	55
Coliformes Totales	NMP/100ml	<u><</u> 5.000	<u><</u> 5.000	<u><</u> 1000	1100	2000	2300						
Coliformes Fecales	NMP/100ml			<u><</u> 200	110	280	110						
Sitios de monitoreo	1. Río Gazamumo cuenca alta 2. Río Gazamumo antes del Caño Muerto (o caño Picho) que conduce las aguas residuales del Municipio 3. Río Gazamumo zona de Playas												

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados:</u> Los valores de DBO₅ no se encuentran dentro del rango definido para los objetivos de calidad durante las épocas de estiaje e invierno del año 2009, lo que indica contaminación por carga orgánica.

5.4. RÍO GUAVIO - MUNICIPIO DE GACHETÁ

5.4.1. Calidad General


Tabla 9. Parámetros fisicoquímicos en el Río Guavio - Municipio de Gachetá.

		Año	2007 (es	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)			
Parámetro	Unidad	Sitio	de mues	streo	Siti	o de muest	reo	Siti	o de muest	reo	
		1	2	3	1	2	3	1	2	3	
Temperatura	°C	17.8	17.7	18.7	17.8	18.3	15	14.3	19.3	16.6	
рН	Unidades	6.84	6.13	5.84	7.3	6.13	6.46	7.49	6.54	7.29	
Oxigeno disuelto	mg O ₂ /L	7.83	7.77	7.66	7.05	7.81	6.12	8.18	7.49	8.13	
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	<2	< 2	< 2	17.19	4.38	7.35	10.3	4.2	4.89	
Demanda Química de Oxígeno (DQO)	mg/L	28	19	23	42	15	27	40	15	16	
Sólidos Suspendidos totales (SST)	mg/L	76	32	238	16.5	18	103	9	100	134	
Sólidos Totales	mg/L	124	68	280	54.29	70	174.2	51.43	178.57	210	
Turbiedad	NTU	39	12	40	27.8	25.3	102	17.5	83.7	110	
Conductividad	μs/cm	30	10	35	19.82	46.3	63.6	17.15	28	72.2	
Nitritos	mg NO₂/L	<0.001	<0.001	<0.001	0.09	0.08	0.16	0.08	0.15	0.11	
Nitratos	mg NO₃/L	<0.1	<0.1	<0.1	1.1	0.4	1.5	<0.4	3	1	
Ortofosfatos	mg PO₄/L	0.07	0.08	0.05	0.13	0.28	0.38	0.13	0.33	0.2	
Fósforo Total	mg P/L	0.05	0.05	0.04	0.06	0.12	0.15	0.09	0.29	0.29	
Coliformes Totales	NMP 100/ml	14000	28000	43000							
Coliformes Fecales	NMP 100/ml	43	1200	2800							
Caudal	m³/seg	1983,9	5017,7	5370,5	2130,30	5286,75	6260,07	28533,94	63905,69	68244,23	
Sitios de monitoreo					da el Carme se Sector El		avio antes	del casco u	rbano del M	unicipio de	

SUBDIRECCION DE GESTION AMBIENTAL

Figura 4. Comportamiento de parámetros fisicoquímicos en el Río Guavio - Municipio de Gachetá.

Sitio de Monitoreo

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados</u>: En las tres campañas de monitoreo el oxígeno disuelto se mantiene estable registrando los mayores valores en los puntos 1 y 2, estando dentro de los valores adecuados para la vida acuática.

La DBO₅ y la DQO presentan las mayores concentraciones en la estación 1, debido posiblemente a las actividades antrópicas en la cuenca alta del río, sin embargo el descenso en la estación 2 (antes de la zona urbana del Municipio) señala la capacidad de depuración del río. De igual forma el posterior incremento en la estación 3 indica el aporte de la carga orgánica de la zona urbana.

El pH aumentó en el muestreo de invierno con respecto a la dos campañas de estiaje, pasando de ácido a ligeramente neutro.

Los SST en las tres campañas y sobre los tres puntos de monitoreo de mantienen estables, pero presentaron su mayor incremento en el punto 3, época de invierno; esto se debió al lavado de la cuenca, a las precipitaciones, a los mayores caudales y es consecuencia de la explotación de gravas y arenas que se presentan aguas arriba en la fuente hídrica.

5.4.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

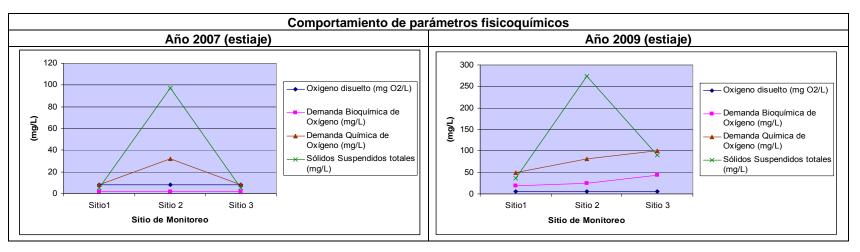
Tabla 10. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Guavio - Municipio de Gachetá.

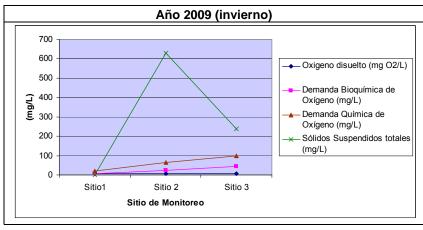
		Obj	jetivos de Calid	dad	A	ño 2007 (estia)	je)	A	ño 2009 (estia	je)	Año 2009 (Invierno)			
Parámetro	Unidad	Cuenca alta (Nacimiento hasta antes de Z.urbana)	Cuenca baja media (Antes Z.ubana Z.mezcla hasta desp. Z.mezcla) Cuenca baja (Desp. Z.mezcla hasta límite municipal)		Sitio de muestreo			S	itio de muestr	eo	Sitio de muestreo			
					1	2	3	1	2	3	1	2	3	
Temperatura	°C	+ 5° respecto	a la Temperat	ura ambiente	17,8	17,7	18,7	17,8	18,3	15	14,3	19,3	16,6	
Temperatura ambiente	°C							20	27	20	20	23,3	17,1	
pН	Unidades		Entre 5.0 y 9.0		6,84	6,13	5,84	7,3	6,13	6,46	7,49	6,54	7,29	
Oxigeno disuelto	mg O₂/L	≥7			7,83	7,77	7,66	7,05	7,81	6,12	8,18	7,49	8,13	
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L		≤ 3		<2	< 2	< 2	17,19	4,38	7,35	10,3	4,2	4,89	
Sólidos Suspendidos totales (SST)	mg/L				76	32	238	16,5	18	103	9	100	134	
Coliformes Totales	NMP/100ml		≤ 20000		14000	28000	43000							
Coliformes Fecales	NMP/100ml	≤ 2000			43	1200	2800							
Sitios de monitoreo	1. Río Guavio	zona de cuenca	a alta, vereda e	l Carmen 2. Río	Guavio antes	del casco urb	ano del Munici	pio de Gacheta	á. 3. Río Guavid	inicio del Emb	oalse . Sector E	I Piñal.		

SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: La DBO5 presenta valores que no se encuentran dentro del rango permisible para los objetivos de calidad durante las épocas de estiaje e invierno del año 2009, igualmente sucede para los Coliformes fecales en la época de estiaje del año 2007, presentando valores adecuados en el estiaje del año 2009. Estos resultados nos indican que la contaminación orgánica se presenta en toda la cuenca especialmente en el sitio 1 de muestreo.

5.5. RÍO NEGRO – MUNICIPIO DE FÓMEQUE


5.5.1. Calidad General


Tabla 11. Parámetros fisicoquímicos en el Río Negro – Municipio de Fómeque.

		Año	2007 (es	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)				
Parámetro	Unidad	Sitio	de mues	streo	Siti	o de mues	treo	Siti	o de muest	reo		
		1	2	3	1	2	3	1	2	3		
Temperatura	°C	9.6	17.1	15.7	10.7	20.4	18.4	15.40	19.2	19.2		
рН	Unidades	7.31	8.22	8.26	7.75	8	8	8.12	8.12	8.87		
Oxigeno disuelto	mg O₂/L	7.91	8.42	8.32	6.19	5.55	5.24	7.26	7.82	7.64		
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	< 2	< 2	< 2	18.63	25.1	43.8	5.77	22.5	44		
Demanda Química de Oxígeno (DQO)	mg/L	8	32.0	8	50	82	100	19.00	65	100		
Sólidos Suspendidos totales (SST)	mg/L	< 5	97	< 5	37	274	91	1.00	628	237		
Sólidos Totales	mg/L	110	97	208	100	678	879	50.00	927.14	642.8		
Turbiedad	NTU	1	1	2.3	54.1	195	312	0.93	40.5	169		
Conductividad	μs/cm	80	325	320	33	504	463	79.00	468	443		
Nitritos	mg NO₂/L	0.001	0.007	0.025	0.12	0.73	1	0.04	0.09	0.07		
Nitratos	mg NO₃/L	< 0.1	0.15	0.15	2.7	2.2	5.4	1.30	0.9	1.5		
Ortofosfatos	mg PO₄/L	0.06	0.09	0.19	0.37	0.28	0.77	0.53	0.68	0.1		
Fósforo Total	mg P/L	0.04	0.05	0.12	0.16	0.12	0.35	< 0.03	0.065	<0.03		
Coliformes Totales	NMP 100/ml	400	21000	210000								
Coliformes Fecales	NMP 100/ml	30	2100	23000								
Caudal	m³/seg	77.5	1263.8	4297.4	1837.41	3737.36	4158.39	717.22	2804.72	3157.65		
Sitios de monitoreo							Río Negro a ezclas de la					

Figura 5. Comportamiento de parámetros fisicoquímicos en el Río Negro - Municipio de Fómeque.

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados</u>: Al analizar el comportamiento de la fuente hídrica en las tres campañas, se observó que el parámetro Oxígeno Disuelto es superior a 6 mg/L, a excepción de los muestreos en estiaje en las estaciones 2 y 3. La geografía quebrada favorece el proceso de oxigenación del cuerpo hídrico.

Los niveles de Demanda Química de Oxígeno (DQO) y Demanda Bioquímica de Oxígeno (DBO₅), se registran altos para aguas superficiales naturales, desde su cuenca alta, correspondiendo los mayores valores a la estación ubicada aguas abajo de la zona urbana del Municipio de Fómeque y la Inspección La Unión (estación 3).

Los niveles de coliformes totales se incrementan en la estación 3 por la contaminación doméstica.

5.5.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

Tabla 12. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Río Negro Municipio de Fómeque.

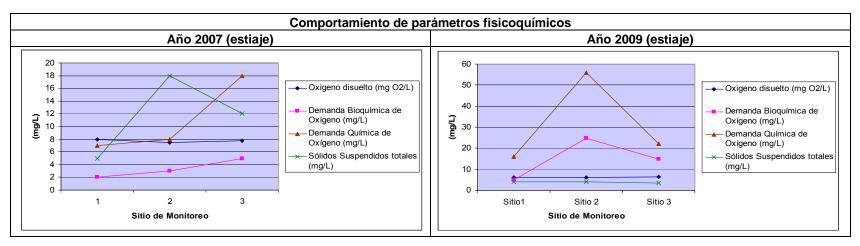
		Ob	jetivos de Calid	dad	A	ño 2007 (estia	je)	A	ño 2009 (estiaj	e)	Año 2009 (Invierno)		
Parámetro	Parámetro Unidad (Nacimiento hasta antes de Z.urbana) hasta desp. (Desp. 2.urbana) hasta desp. hasta límite			` '	s	itio de muestre	eo	s	itio de muestre	e 0	Sitio de muestreo		
					1	2	3	1	2	3	1	2	3
Temperatura	°C	+ 5° respecto	a la Temperat	ura ambiente	9,6	17,1	15,7	10,7	20,4	18,4	15,4	19,2	19,2
Temperatura ambiente	°C										14,6		
рН	Unidades	Entre 5.0 y 9.0			7,31	8,22	8,26	7,75	8	8	8,12	8,12	8,87
Oxigeno disuelto	mg O₂/L	≥7			7,91	8,42	8,32	6,19	5,55	5,24	7,26	7,82	7,64
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	≤ 2	≤	3	< 2	< 2	< 2	18,63	25,1	43,8	5,77	22,5	44
Sólidos Suspendidos totales (SST)	mg/L				< 5	97	< 5	37	274	91	1,00	628	237
Coliformes Totales	NMP/100ml		≤ 20000		400	21000	210000						
Coliformes Fecales	NMP/100ml	≤ 2000			30	2100	23000						
Sitios de monitoreo	_	zona de cuend la Inspección l		de la falla geol	lógica 2. Río	Negro antes d	el casco urbar	no del Municip	io de Fomequ	e. 3. Río Neg	gro después d	e la zona de n	nezclas de las

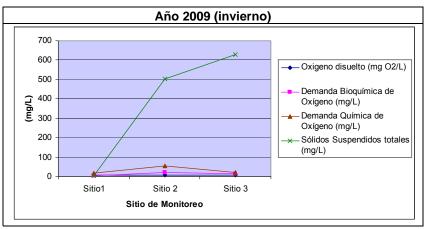
SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados:</u> Los valores de la DBO₅ no se encuentran dentro del rango definido para los objetivos de calidad durante las épocas de estiaje e invierno del monitoreo realizado en el año 2009, y es clara la necesidad de implementar las acciones para la reducción del aporte de materia orgánica a lo largo de la fuente hídrica.

5.6. QUEBRADA GRANDE - MUNICIPIO DE UBALÁ

5.6.1. Calidad General


Tabla 13. Parámetros fisicoquímicos en el Quebrada Grande – Municipio de Ubalá.


		Año	2007 (est	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)			
Parámetro	Unidad	Sitio	de mues	streo	Siti	o de muest	reo	Sitio de muestreo			
		1	2	3	1	2	3	1	2	3	
Temperatura	°C	14.8	19	19	15	20.3	19.8	14.6	17.5	17.6	
pH	Unidades	7.86	7.5	7.95	7.9	7.77	8	7.41	7	6.2	
Oxigeno disuelto	mg O ₂ /L	7.93	7.44	7.76	6.01	6.10	6.45	7.84	7.75	8.00	
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	< 2	< 3	< 5	4.93	24.9	14.82	3.8	21.33	13.55	
Demanda Química de Oxígeno (DQO)	mg/L	7	8	18	16	56	22	17	53	21	
Sólidos Suspendidos totales (SST)	mg/L	< 5	18	12	4	4	3.5	4	502	630	
Sólidos Totales	mg/L	18	106	108	24.29	150.78	144.29	25.71	1481	1580	
Turbiedad	NTU	1.6	20	12	1.86	9.81	7.14	6.01	402	160	
Conductividad	μs/cm	220	125	255	16.71	185.6	193.6	18.45	65.8	82.1	
Nitritos	mg NO ₂ /L	0.001	0.025	0.047	0.03	0.16	0.18	0.06	0.12	0.15	
Nitratos	mg NO ₃ /L	0.1	0.6	0.8	1.1	2.8	3.4	1.7	1.2	1	
Ortofosfatos	mg PO₄/L	0.09	0.21	0.29	9.13	0.37	0.25	0.2	0.21	0.39	
Fósforo Total	mg P/L	0.04	0.09	0.12	0.06	0.16	0.11	0.05	0.16	0.3	
Coliformes Totales	NMP 100/ml	4300	75000	39000					>1100	>1100	
Coliformes Fecales	NMP 100/ml	390	2100	2800					23	23	
Caudal	m³/seg	16	119.5	132.1	21.48	78.09	111.58	163.2	3367.73	3804.72	
Sitios de monitoreo									la Grande o Grande ant		

Página 30 de 30

Figura 6. Comportamiento de parámetros fisicoquímicos en La Quebrada Grande - Municipio de Ubalá.

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados</u>: En las tres campañas de monitoreo se puede observar que el pH registra valores similares, es así como en los 3 puntos de monitoreo se mantienen valores cercanos a la neutralidad. El oxigeno disuelto, también se mantiene estable pero presenta un leve incremento en el punto tres de las tres campañas, manifestando su mayor concentración en la época de invierno de 2009.

Los niveles de DBO₅, de DQO y SST se incrementan con el aporte de los vertimientos de la zona urbana del municipio (estación 2).

5.6.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

Tabla 14. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en la Quebrada Grande - Municipio de Ubalá.

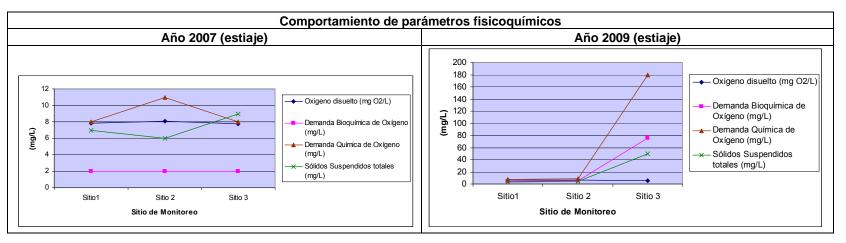
		Obj	jetivos de Cali	dad	Α	ño 2007 (estia)	je)	A	ño 2009 (estia)	je)	Año 2009 (Invierno)			
Parámetro Unidad		Cuenca alta (Nacimiento hasta antes de Z.urbana) de Z.urbana) L.urbana) Cuenca de Cuenca ba (Desp. alta (Desp. hasta lími) L.mezcla) Cuenca ba (Cuenca ba (Desp. alta (Desp. hasta lími) L.mezcla)			s	itio de muestre	eo	S	itio de muestre	e 0	Sitio de muestreo			
					1	2	3	1	2	3	1	2	3	
Temperatura	°C	+ 5° respecto	a la Temperat	ura ambiente	14,8	19	19	15	20,3	19,8	14,6	17,5	17,6	
Temperatura ambiente	°C									20	14	18	18,3	
рН	Unidades	entre 6.5 y 8.5	Entre 5	i.0 y 9.0	7,86	7,5	7,95	7,9	7,77	8	7,41	7	6,2	
Oxigeno disuelto	mg O₂/L		≥ 7			7,44	7,76	6,01	6,10	6,45	7,84	7,75	8,00	
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	≤2	≤	3	< 2	< 3	< 5	4,93	24,9	14,82	3,8	21,33	13,55	
Sólidos Suspendidos totales (SST)	mg/L	< 20			< 5	18	12	4	4	3,5	4	502	630	
Coliformes Totales	NMP/100ml	<u><</u> 1000	<u><</u> 20.000	<u><</u> 20.000	4300	75000	39000					>1100	>1100	
Coliformes Fecales	NMP/100mI	<u><</u> 200		<u><</u> 2.000	390	2100	2800						23	
Sitios de monitoreo		Grande antes d ande antes del		ana-sector Bo	catoma Munic	ipal 2. Quebra	da Grande de	espuès de la u	ultima descarga	a del municipi	o (Despuès d	e la Quebrada	El Gusano) 3.	

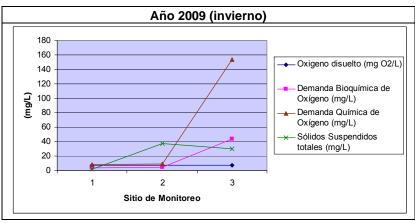
SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: Los valores de la DBO5 no se encuentran dentro del rango definido para los objetivos de calidad durante la época de estiaje e invierno de 2009, denotando un aporte significativo de materia orgánica a lo largo de la fuente, igualmente sucede con el Oxígeno disuelto en la época de estiaje del 2009, sin embargo, presenta valores por encima de los 6 mg/L (cercanos al límite inferior definido para el objetivo de calidad).

5.7. QUEBRADA EL CURO – MUNICIPIO DE GAMA

5.7.1. Calidad General


Tabla 15. Parámetros fisicoquímicos en el Quebrada El Curo – Municipio de Gama.


		Año	2007 (es	tiaje)	Año	2009 (esti	aje)	Año 2009 (invierno)			
Parámetro	Unidad	Sitio	de mues	streo	Siti	o de mues	treo	Siti	o de mues	reo	
		1	2	3	1	2	3	1	2	3	
Temperatura	°C	13.19	15.1	18.9	14	15	18.7	14.30	18	18.3	
pН	Unidades	6.8	7.2	6.6	8	7.15	7.4	7.29	7.15	7.41	
Oxigeno disuelto	mg O₂/L	7.88	8.07	7.74	6.46	7.01	4.91	7.54	7.41	7.07	
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	< 2	< 2	< 2	3.95	5.72	76	3.60	4.8	43.3	
Demanda Química de Oxígeno (DQO)	mg/L	8	11	8	8	9	180	8	9	154	
Sólidos Suspendidos totales (SST)	mg/L	7	6	9	3	4.5	50	2	37	30	
Sólidos Totales	mg/L	50	54	70	45.71	77.14	298.57	44.29	74.29	187.14	
Turbiedad	NTU	5.4	3.5	5.2	2.4	3.47	83.6	2.13	15.47	31.5	
Conductividad	µs/cm	45	45	110	51.8	73	363	50.30	63.8	225	
Nitritos	mg NO ₂ /L	0.012	0.001	0.012	0.05	0.03	0.35	0.06	0.08	0.1	
Nitratos	mg NO₃/L	0.15	0.2	0.2	0.5	0.06	1	0.60	1.8	0.5	
Ortofosfatos	mg PO₄/L	0.18	0.09	0.09	0.06	0.24	6.3	0.35	0.06	2.45	
Fósforo Total	mg P/L	0.08	0.04	0.04	0.03	0.1	2.75	0.03	0.11	1.62	
Coliformes Totales	NMP 100/ml	2300	7500	2100							
Coliformes Fecales	NMP 100/ml	70	640	110							
Caudal	m³/seg	11.1	12.9	67	7.43	10.6	18.74	203.58	220.49	16.59	
Sitios de monitoreo							o antes del d as descarga				

de Gama

Figura 7. Comportamiento de parámetros fisicoquímicos en La Quebrada El Curo - Municipio de Gama.

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados</u>: La quebrada el Curo es la fuente que alimenta el acueducto de este municipio y a su vez recibe las aguas residuales domésticas. Esta quebrada tiene agua de buena calidad en los sitios 1 y 2. En el Sitio 3 presenta aguas de mala calidad, debido a las descargas de aguas residuales de la zona urbana que se vierten sin tratar, lo cual se evidencia claramente en las concentraciones de DBO_5 y DQO.

En concordancia con lo anterior, los niveles de oxígeno disuelto presentan disminución en la medida en que se desciende en la cuenca, sin embargo en la mayoría de los casos registra valores por encima de los 7mg/L.

Las condiciones de pH a lo largo de la corriente son cercanas a la neutralidad (7mg/L).

5.7.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

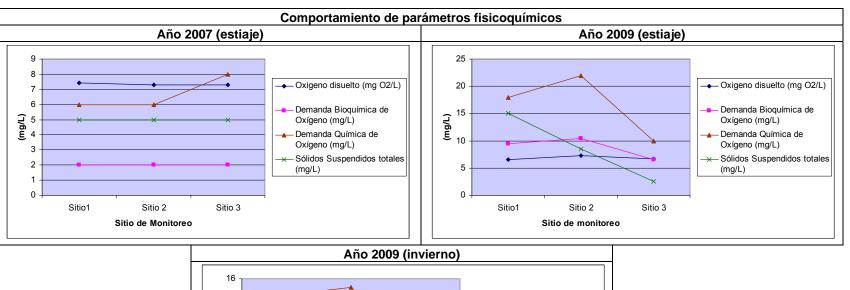
Tabla 16. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en la Quebrada El Curo- Municipio de Gama.

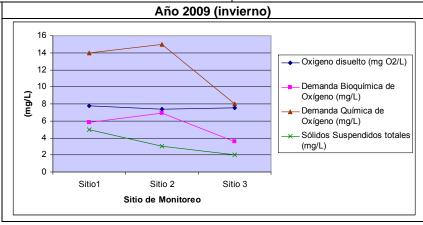
		Ob	jetivos de Calid	dad	A	ño 2007 (estia	je)	A	ño 2009 (estia	je)	Añ	o 2009 (Invie	rno)
Parámetro	Unidad	Cuenca alta (Nacimiento hasta antes de Z.urbana)	Cuenca media (Antes Z.ubana hasta desp. Z.mezcla)	Cuenca baja (Desp. Z.mezcla hasta límite municipal)	s	itio de muestro	eo	S	Sitio de muestro	eo	s	itio de muestr	eo
					1	2	3	1	2	3	1	2	3
Temperatura	°C	+ 5° respecto	a la Temperat	ura ambiente	13,19	15,1	18,9	14	15	18,7	14,3	18	18,3
Temperatura ambiente	°C							16,5	24,3	20	17,3	25	17,6
рН	Unidades	entre 6.5 y 8.5	Entre 5	i.0 y 9.0	6,8	7,2	6,6	8	7,15	7,4	7,29	7,15	7,41
Oxigeno disuelto	mg O ₂ /L		≥ 7		7,88	8,07	7,74	6,46	7,01	4,91	7,54	7,41	7,07
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	≤ 2	≤	3	< 2	< 2	< 2	3,95	5,72	76	3,60	4,8	43,3
Sólidos Suspendidos totales (SST)	mg/L	< 20			7	6	9	3	4,5	50	2,00	37	30
Coliformes Totales	NMP/100ml	<u><</u> 1000	<u><</u> 10.000	<u><</u> 5.000	2300	7500	2100						
Coliformes Fecales	NMP/100ml	<u><</u> 200			70	640	110						
Sitios de monitoreo		El Curo Zona d del Municipio d		2. Quebrada E	El Curo antes	del casco urba	no del Municip	io de Gama 3	. Quebrada El	Curo después	de la zona de	mezcla de las	descargas de

SUBDIRECCION DE GESTION AMBIENTAL

<u>Análisis de resultados:</u> Los valores de la DBO₅ no se encuentran dentro del rango definido para los objetivos de calidad durante la época de estiaje e invierno del año 2009, especialmente en el punto 3, que registra valores por encima de los 40 mg/L, indicando que en este punto hay una mayor contaminación orgánica por vertimientos y que es necesario implementar un sistema de tratamiento para disminuir la carga orgánica.

5.8. EMBALSE DEL GUAVIO- MUNICIPIO DE GACHALÁ


5.8.1. Calidad General


Tabla 17. Parámetros fisicoquímicos en el Embalse del Guavio – Municipio de Gachalá.

					ııaıa.					
		Año	2007 (est	iaje)	Año	2009 (esti	aje)	Año :	2009 (invi	erno)
Parámetro	Unidad	Sitio	de mues	treo	Siti	o de muest	reo	Siti	o de mues	reo
		1	2	3	1	2	3	1	2	3
Temperatura	°C	21.3	22.7	21.2	22.1	22.7	21.7	22.2	22.5	19.8
рН	Unidades	7.24	7.45	7.7	7.85	7.2	7.5	7.34	7.84	7.93
Oxigeno disuelto	mg O₂/L	7.44	7.29	7.29	6.54	7.27	6.73	7.74	7.34	7.57
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	< 2	< 2	< 2	9.51	10.42	6.54	5.8	6.88	3.6
Demanda Química de Oxígeno (DQO)	mg/L	6	6	8	18	22	10	14	15	8
Sólidos Suspendidos totales (SST)	mg/L	< 5	< 5	< 5	15	8.5	2.5	5	3	2
Sólidos Totales	mg/L	96	106	98	141.93	154.29	147.14	107.14	112.86	105.71
Turbiedad	NTU	3.2	2.5	3	16.72	16.49	15.5	13.88	8.81	14.2
Conductividad	μs/cm	100	135	190	171.9	182.2	171.4	173.3	144.3	153
Nitritos	mg NO₂/L	0.001	0.001	0.001	0.08	0.06	0.06	0.09	0.07	0.08
Nitratos	mg NO₃/L	< 0.1	< 0.1	< 0.1	1.4	1.3	1.4	1.1	0.3	0.3
Ortofosfatos	mg PO₄/L	0.12	0.12	0.1	0.2	0.2	0.22	0.1	0.12	0.1
Fosforo Total	mg P/L	0.06	0.05	0.05	0.09	0.09	0.1	0.08	0.04	0.06
Coliformes Totales	NMP 100/ml	1500	1400	2300						
Coliformes Fecales	NMP 100/ml	40	110	280						
Caudal	m³/seg									
Sitios de monitoreo	1. Embalse del Guavio Guavio Sec	zona de i	nfluencia d							

Figura 8. Comportamiento de parámetros fisicoquímicos en el Embalse del Guavio - Municipio de Gachalá.

SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: Al embalse confluyen las descargas de los Municipios de Gama, Gachetá, Junín, Ubalá y Gachalá, vertiendo este último en forma directa al embalse, para lo cual se abaliza el impacto en el sitio 2 de muestreo. El embalse constituye el sumidero de sustancias de interés ambiental. Sin embargo, la capacidad volumétrica del embalse, aproximadamente de 1.600.000 m³ permite que la carga contaminante presente un comportamiento homogéneo en los tres puntos de monitoreo, esto se entiende a la luz de que el embalse se constituye en un homogenizador de caudal y cargas, y por lo tanto el gradiente de concentración de especies químicas diluidas en él, tiende a permanecer sin cambios, en correspondencia con el porcentaje de dilución.

Las aguas del embalse presentan concentraciones bajas de contaminantes calificándose como de calidad media.

En las tres campañas de época de estiaje y época de invierno, la concentración inicial de oxígeno disuelto se mantiene estable en los tres puntos de monitoreo. La demanda química y bioquímica de oxígeno disminuyen en la época de invierno de 2009, con respecto a los valores registrados en las dos campañas de estiaje, esto a causa del movimiento del agua por el aumento del caudal y la reaireación atmosférica. No obstante, las mayores concentraciones registradas en la estación 2, evidencian la clara influencia del vertimiento de la zona urbana de Gachalá.

5.8.2. Seguimiento a objetivos de Calidad

El siguiente cuadro resume la variación de los parámetros fisicoquímicos definidos en los objetivos de calidad, respecto a los muestreos realizados:

Tabla 18. Seguimiento a parámetros fisicoquímicos con objetivo de calidad en el Embalse del Guavio – Municipio de Gachalá.

		Objetivos o	de Calidad	Año 2007 ((estiaje)	Año 200	9 (estiaje)	Año 2009	(Invierno)
Parámetro	Unidad	Area de influencia de vertimientos Municipales	Area de influencia de vertimientos Municipales	Sitio de I	muestreo	Sitio de I	muestreo	Sitio de ı	muestreo
				1	2	1	2	1	2
Temperatura	°C	± 5° respecto a ambi	·	22,7	21,2	22,7	21,7	22,5	19,8
pН	Unidades	entre 6.5 y 8.5	entre 5.0 y 9.0	7,45	7,7	7,2	7,5	7,84	7,93
Oxigeno disuelto	mg O ₂ /L	OD ≥ 7,0 mg/l (7 satura	70% del valor de ación)	7,29	7,29	7,27	6,73	7,34	7,57
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	≤ 2	≤ 5	< 2	< 2	10,42	6,54	6,88	3,6
Sólidos Suspendidos totales (SST)	mg/L			< 5	< 5	8,5	2,5	3	2
Coliformes Totales	NMP/100ml	<u><</u> 1.000	<u><</u> 20.000	1400	2300				
Coliformes Fecales	NMP/100ml	<u><</u> 200		110	280				
Sitios de monitoreo	1. Embalse d Presa	lel Guavio zona d	e influencia de la	descarga de	Gachalá-Sect	or frente a las	cabañas 2. E	mbalse del Gu	avio Sector La

SUBDIRECCION DE GESTION AMBIENTAL

Análisis de resultados: Los valores de la DBO₅ no se encuentran dentro del rango definido para los objetivos de calidad durante la época de estiaje año 2009 y en el sitio de muestreo 1 época de invierno, indicando que hay contaminación orgánica debida principalmente a las descargas de los vertimientos Municipales, no obstante los niveles son cercanos al límite definido.

6 INDICE DE CALIDAD DEL AGUA (ICA)

Se realiza el cálculo del ICA mediante el uso de la metodología de Brown¹ (ICA geométrico) que incluye nueve de los parámetros fisicoquímicos medidos en campo y reportados por el laboratorio, razón por la cual el análisis de la calidad del agua permite tener una idea más clara y aproximada a la realidad. Ver anexo 2.

El resultado final es interpretado de acuerdo a la siguiente escala de clasificación:

Esca	ala de Clasifica	ción
EXELENTE	91-100	
BUENA	71-90	
MEDIA	51-71	
MALA	26-50	
MUY MALA	0-25	

En este informe se realiza el análisis comparativo de los índices y los criterios de uso de cada fuente según el ICA para cada temporada de monitoreo (estiaje, 2007; estiaje 2009 e invierno 2009).

¹ LEÓN, Luís. Índices de Calidad del Agua (ICA), Forma de Estimarlos y Aplicación en la Cuenca Lerma-Chapal. México 2005.

Tabla 19. Resultados del ICA para las fuentes hídricas superficiales de la jurisdicción de Corpoguavio.

MUNICIPIO	Punto de Monitoreo Fuente Hídrica	VALOR ICA ESTIAJE 2007	VALOR ICA ESTIAJE 2009	VALOR ICA INVIERNO 2009
⋖	RIO SIECHA CUENCA ALTA	54,32	68.4	80,04
GUASCA	RIO SIECHA ANTES ANTES DE LA SESEMBOCADURA DEL RÍO AVES	37	63,8	75,69
	RIO SIECHA LIMITE JURISDICCIONAL, ANTES DEL EMBALSE TOMINÉ	46,14	51,7	76,24
<u> </u>	RIO NEGRO ZONA DE CUENCA ALTA	66,86	53,7	73,66
EQL	RIO NEGRO ANTES DEL CASCO URBANO	49,19	42,1	50,54
FOMEQUE	RIO NEGRO DESPUES DE LA ZONA DE MEZCLAS DE LAS DESCARGAS DE LA INSPECCIÓN LA UNION.	50,92	44,7	35,21
<	RIO GAZAMUMO ZONA CUENCA ALTA (SECTOR MESA DE REYES)	59,26	63,3	62,13
MEDINA	RIO GAZAMUMO ANTES DEL CAÑO MUERTO QUE CONDUCE LAS AGUAS RESIDUALES DEL MUNICIPIO.	54,85	66,6	65,78
	RIO GAZAMUMO ZONA DE PLAYA	55,73	52,1	61,54
.<	RIO GUAVIO ZONA DE CUENCA ALTA	58,51	60,8	69,25
GACHETA	RIO GUAVIO ANTES DEL CASCO URBANO DEL MUNICIPIO DE GACHETA.	53,80	68,6	56,83
<u> </u>	RIO GUAVIO INICIO DEL EMBALSE SECTOR EL PIÑAL	47,36	53,6	54,04
	QUEBRADA GRANDE ANTES DE LA ZONA URBANA SECTOR BOCATOMA MUNICIPAL.	59,53	71,7	74,85
UBALA	QUEBRADA NEGRA DESPUES DE LA DESCARGA DEL MUNICIPIO.	48,88	52,6	39,43
_	QUEBRADA NEGRA ANTES DEL EMBALSE	49,89	61,1	40,46
	QUEBRADA EL CURO CUENCA ALTA ANTES DE LA BOCATOMA DEL MUNICIPIO	60,45	74,5	79,14
GAMA	QUEBRADA EL CURO ANTES DE CASCO URBANO.	59,15	75,2	68,41
	QUEBRADA EL CURO DESPUES DE LA ZONA DE MEZCLAS DE LAS DESACARGAS DEL CASCO URBANO.	59,48	43,3	37,65

SUBDIRECCION DE GESTION AMBIENTAL

MUNICIPIO	Punto de Monitoreo Fuente Hídrica	VALOR ICA ESTIAJE 2007	VALOR ICA ESTIAJE 2009	VALOR ICA INVIERNO 2009
_	QUEBRADA ARENAL CUENCA ALTA	57,98	69,2	74,89
NINO	QUEBRADA EL ARENAL ANTES DEL DEL CASCO URBANO	58,33	71,2	63,76
	QUEBRADA EL ARENAL ANTES DE DESMBOCAR EN EL RIO GUAVIO	57,81	66,6	60,03
<	EMBALSE DEL GUAVIO SECTOR CUEVA OSCURA ZONA DE INFLUENCIA DE LA DESCARGA DEL MUNICIPIO DE UBALÁ.	61,96	64,7	67,20
GACHALA	EMBALSE DEL GUAVIO SECTOR FRENTE A LAS CABAÑAS, ZONA DE INFLUENCIA DE LA DESCARGA DE GACHALA.	60,32	66,2	69,96
	EMBALSE DEL GUAVIO SECTOR LA PRESA	58,50	68,0	73,29

Documento soporte contrato de monitoreo 175 de 2007 Consultoria Ambiental y 578 de 2008 Consorcio Calidad Guavio.

Análisis de Resultados

• Municipio de Guasca - ICA Río Siecha

El Río Siecha presenta calidad entre media y mala en todo su recorrido especialmente durante la época de estiaje, debido principalmente a los parámetros fisicoquímicos turbiedad, sólidos totales y la carga microbiana (coliformes fecales). No obstante en época de lluvias se evidencia recuperación de la fuente por dilución de las sustancias contaminantes. En el verano el Río Siecha en sus tramos de menor pendiente presenta contaminación de leve a fuerte siendo más notoria para el verano del 2009.

Municipio de Fómeque – ICA Río Negro

De acuerdo a los resultados del ICAm, el agua de esta quebrada posee una calidad mala para los dos periodos de verano, especialmente e nos sitios ubicados antes del casco urbano y después de la zona de mezcla de las descargas de la Inspección La Unión; esto se debe a los altos valores que presentan los parámetros fisicoquímicos DBO5, sólidos totales, turbiedad y coliformes fecales, pero en la cuenca alta este recurso, presenta una mejor calidad.

En la estación de invierno a lo largo de la corriente hídrica, la calidad del agua es variable, fluctuando de calidad buena a media y por último en el punto donde recibe las aguas residuales del municipio la fuente presenta calidad mala.

Municipio de Medina - ICA Río Gazamumo

La calidad del agua en el Río Gazamumo, entre los periodos de estiaje e invierno se mantiene estable, presentando un índice de calidad media a lo largo

SUBDIRECCION DE GESTION AMBIENTAL

de la corriente. Pero en el sitio tres, en la zona de playas es más notorio el deterioro debido al incremento de los valores DBO5, sólidos totales, turbiedad y coliformes fecales, generados principalmente por las actividades de extracción de material del lecho del río.

• Municipio de Gachetá - ICA Río Guavio

En el Río Guavio a pesar de las importantes diferencias del caudal entre el verano y el invierno, el índice de calidad no presenta variaciones apreciables para las dos campañas del 2009. El índice muestra que el río presenta contaminación media, que en los sitios 2 y 3 (antes del casco urbano e inicio del embalse) puede deberse a las explotaciones de material en el cauce del río, con el consecuente aumento en los parámetros fisicoquímicos Sólidos totales y Turbiedad.

• Municipio de Ubalá - ICA Quebrada Grande

El índice para los puntos 2 y 3 refleja pérdida de la calidad del agua especialmente en la época de invierno, fenómeno que se podría explicar básicamente porque en este tramo se produce un cambio fuerte en la pendiente hidráulica, pasando de flujo turbulento a laminar y por ende se presenta acumulación de gran cantidad de sedimentos, acentuado por la gran diferencia entre los caudales de estiaje e invierno. La categoría de calidad (mala) en estos sitios se debe principalmente a los aportes de Sólidos totales y el aumento de la turbiedad.

• Municipio de Gama - ICA Quebrada El Curo

La Quebrada El Curo va disminuyendo su calidad a lo largo de la corriente, con una tendencia muy similar entre invierno y verano. En el sitio tres (Quebrada el Curo después de la zona de mezcla de las descargas del casco urbano) presenta aguas de mala calidad, debido principalmente a la influencia de los parámetros fisicoquímicos Sólidos Totales y turbiedad. La magnitud del impacto de los vertimientos sobre la calidad de la fuente, es significativo, especialmente en el estiaje de 2009.

• Municipio de Junín - ICA Quebrada Arenal

Los índices de calidad para la quebrada Arenal son muy similares para las dos campañas (estiaje 2009 e invierno 2009), a pesar que los caudales variaron bastante entre los dos periodos.

La calidad del agua en la quebrada el Arenal en los dos primeros sitios de monitoreo no presenta mayor variación, sin embargo, en el sitio 3 esta quebrada

SUBDIRECCION DE GESTION AMBIENTAL

lleva las aguas residuales del municipio de Junín, ocasionando una disminución de la calidad del agua de buena a media debido principalmente a los parámetros fisicoquímicos sólidos totales y turbiedad, también se presenta en este punto un incremento de la carga microbiana (coliformes fecales). La quebrada el Arenal no recibe otras corrientes aportantes, lo cual hace que los caudales en esta quebrada no sufran cambios significativos de un sitio a otro y afectando por tanto la capacidad de dilución de la contaminación doméstica recibida.

Municipio de Gachalá - ICA Embalse del Guavio

Las aguas del embalse presentan en la mayoría de los reportes (8 de los 9 indicados en la tabla) calidad media, con una mejora importante en el ICA por efecto de la renovación del agua debida al invierno, frente a las dos mediciones de los estiajes de las dos campañas anteriores (2008 y 2009), especialmente para la zona de presa, donde se paso de calificarla de contaminada a aceptable. No obstante, los valores son cercanos al límite inferior para la calidad buena (valor de 71). La calidad encontrada se debe principalmente a los parámetros DBO₅, DQO y Sólidos Totales teniendo en cuenta que en el embalse confluyen las descargas de los Municipios de Gama, Ubalá A, Gachalá, Gacheta y Junín.

SUBDIRECCION DE GESTION AMBIENTAL

ANEXOS

SUBDIRECCION DE GESTION AMBIENTAL

ANEXO 1.

RESOLUCIÓN 142 DE 2008 - OBJETIVOS DE CALIDAD EN JURISDICCIÓN **DE CORPOGUAVIO**

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

24 ABR. 2008

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO -CORPOGUAVIO

En uso de sus facultades legales y estatutarias, especialmente las conferidas por el numeral 1 del artículo 29 de la Ley 99 de 1993, y el artículo 6 del Decreto 3100 de 2003 modificado por el artículo 3 del Decreto 3440 de 2004, y

CONSIDERANDO

Que la Ley 99 de 1993 en su artículo 42 establece el sistema y método de cálculo para el cobro de las Tasas Retributivas y Compensatorias por la utilización directa o indirecta de la atmósfera, del agua y del suelo para introducir o arrojar desechos.

Que en desarrollo del citado artículo, el Ministerio de Ambiente Vivienda y Desarrollo Territorial, expidió el Decreto 901 de abril 01 de 1997 por medio del cual, se reglamento el cobro de las tasas retributivas por vertimientos puntuales al recurso hídrico, el cual fue modificado

Que posteriormente, mediante el Decreto 3100 el 30 de octubre de 2003 el Ministerio de Ambiente, Vivienda y Desarrollo Territorial, derogó el Decreto 901 de 1997, y que a su vez fue modificado en parte por el Decreto 3440 de octubre 21 de 2004.

Que el artículo 6 del Decreto 3100 de 2003, modificado por el artículo 3 del Decreto 3440 de 2004, dispone que previo al establecimiento de las metas de reducción en una cuenca, tramo o cuerpo de agua, la autoridad ambiental competente deberán:

- a- Documentar el estado del cuerpo de agua en términos de calidad;
- b- Identificar los usuarios que realizan vertimientos en cada cuerpo de agua y que están sujetos al pago de la tasa;
- c- Conocer para cada usuario la concentración de cada parámetro objeto de cobro de la tasa y el caudal del efluente;
- d- Determinar si los usuarios tienen plan de cumplimiento o permiso de vertimientos;
- e- Calcular la línea base como el total de carga contaminante de cada sustancia vertida al cuerpo de agua, durante un año, por los usuarios sujetos al pago de la
- f- Establecer objetivos de calidad de los cuerpos de agua de acuerdo a su uso conforme a los Planes de Ordenamiento del Recurso Hídrico y en ausencia de los Planes de Ordenamiento del Recurso, para el primer quinquenio, las Autoridades Ambientales Competentes podrán utilizar las evaluaciones de calidad cualitativas o cuantitativas del recurso disponibles.

Que el artículo 8 del mismo decreto indica que "para el cumplimiento de la meta global de reducción de la carga contaminante de la cuenca, tramo o cuerpo de agua, la Autoridad Ambiental Competente deberá establecer metas individuales de reducción de carga contaminante para entidades prestadoras de servicio de alcantarillado sujetas a pago de la tasa...", para lo cual, según el artículo 12, dichos usuarios deberán presentar a la Autoridad Ambiental Competente el Plan de Saneamiento y Manejo de Vertimientos que deberá contener las actividades e inversiones necesarias para avanzar en el saneamiento y tratamiento de los vertimientos y la meta de reducción que se fijará con base en las actividades contenidas en el mismo.

"Ambiente para Construir Región"

Carrera 7 No. 1A -52 - PBX: (091) 8538511/13/34 Gachalá, Cundinamarca narca - Colombia - www. corpoguavio.gov.co

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

2 4 ABR. 2038

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO -CORPOGUAVIO

Que los Planes de Saneamiento y Manejo de Vertimientos -PSMV- se reglamentaron mediante las Resoluciones 1433 de 2004 y 2145 de 2005, las cuales establecen que el PSMV deberá ser presentado ante la autoridad ambiental competente por las personas prestadoras del servicio público de alcantarillado y sus actividades complementarias, en un plazo no mayor de cuatro (4) meses contados a partir de la publicación del acto administrativo mediante el cual la autoridad ambiental competente defina el objetivo de calidad de la corriente, tramo o cuerpo de agua receptor.

Que para efectos de la determinación de los objetivos de calidad, CORPOGUAVIO, desarrolló las actividades definidas en la Guía Metodológica (MESOCA), elaborada por el Ministerio de Ambiente, Vivienda y Desarrollo Territorial, teniendo en cuenta, los usos actuales, las evaluaciones de calidad del recurso disponibles tanto cualitativas y cuantitativas y los resultados de los muestreos realizados por la institución para tal fin.

Que dentro de las consideraciones técnicas para la determinación de los objetivos de calidad, se tuvieron en cuenta los objetivos de calidad definidos por la Corporación Autónoma de Cundinamarca-CAR mediante el Acuerdo 043 de octubre 17, en razón a que el Rio Siecha hace parte de la cuenca alta del Rio Bogotá y que éstos fueron establecidos en desarrollo del Documento Conpes 3320 de 2004.

Que en virtud de lo anterior, el DIRECTOR GENERAL DE LA CORPORACION AUTONOMA REGIONAL DEL GUAVIO, CORPOGUAVIO

RESUELVE

ARTICULO PRIMERO.- Establecer las siguientes cuencas de interés y cuerpos de agua superficiales para la determinación de objetivos de calidad de los Municipios de la jurisdicción de Corpoguavio, que serán objeto de la implementación de la Tasa Retributiva por Vertimientos Puntuales:

Municipio	Cuenca	Cuerpo de agua para Objetivo de Calidad
1. Fómegue	Ríos Negro - Blanco	Río Negro
2. Guasca	Ríos Siecha - Aves	2. Río Siecha
3. Junín		3. Qda. El Arenal
4. Gama	Río Guavio	4. Qda. El Curo
5. Gachetá		5. Río Guavio
6. Ubalá		6. Qda. Grande
7. Gachalá	Embalse del Guavio	Embalse del Guavio
8. Medina	Río Gazamumo	8. Río Gazamumo

ARTICULO SEGUNDO.- Establecer los siguientes objetivos de calidad para los cuerpos de agua o tramos de los mismos, receptores de los vertimientos domésticos de los municipios de la jurisdicción de la Corporación Autónoma Regional del Guavio, CORPOGUAVIO, así:

"Ambiente para Construir Region"

Carrera 7 No. 1A -52 - PBX: (091) 8538511/13/34 Gachalá, Cundinamarca - Colombia - www.corpoguavio.gov.co

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de - 24 ABR. 2008

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO – CORPOGUAVIO

		The party and	CRITERIO DE			Parametro Riskosquimisco	openimico		
Cuen	ļ	Agus	CALIDAD SECÚN	Parametro	Unidad de Macida	Valor Medido (estiaje)	Valor Tecnico para al uso actual	Valor Tecnico para Objetino Calidad CAR al uso setual Acedo: 04306	Objetivo de Calidad
				Stro		Arries Zona Urbana	200 1 200 2		Aller School Street
			_	Caudel	şn	306,40		W2882758.63382	200 - 200 - 200 - 200 C
				Æ	unidades de pH	7,28	entre 5.0 y 9.0	entre 5,0 y 9,0	entre 6,0 y 9,0
			0.4651-15	680	mgr	3,00	55	<7	42
		Agricola, Pecuario	~	TSS	mol	33.00	121/20 V. SERVE	4.0	420
	Zona 1. Cuenza	Piscicola (Inucha).	_	8	mol.	7.88	500 €	×	26,0
Dio SECHA		Œ.	_	Material Potente	Presence/Ausencia	35/36/30	Ausencia	3640 SPERMENT OF	Ausencia
2	_	_	_	Grasse v Acedes	PresencialAusencia	\$2000 × 4000 000	Ausencia	36600 KTR (90K)	Ausencia
	Zone Urbana	Industrial (enfrisdor	_	Ope	Presencia/Ausoncia	2000 to Just 199	Ausencia		Ausencia
		(eche)	y Faura	Temperatura	p	14,00	±5 °C respecto a la Temp, ambiente		+6 °C respecto a la Temp, ambiente
ΛE				Cofformes Totales	NAP/100ml	11,000	> 20,000	₹20,000	< 20,000
				Colfornes Fecales	NAP1100ml	1500	≤2,000	化多数多数增长	< 2000
AH.				Stro	SEC. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	Desp. Zona Mezola	2000 1000000	~C/85889809999	#90.130363.0388
				Caudal	5	281,2	STATE OF THE PROPERTY.	N. SPERSON SETS	を表して 金色の 2000 Page 2000
				£	unidades de pH	7,31	entre 5,0 y 9,0	entre 5,0 y 9,0	entre 5,0 y 9,0
				000	molt	6,00	< 20	<7	9,
	20va 2, 20va 0e			188	mol.	40,00	- ACCORD (1957)	× 10	- 22
	descarga de	Asmissiony	Clese V Dwnaje y	8	nou	7.78	230	×	2.6.0
RIO SIECHA	_	Dilución (bona	transporte de	Material Flotante	Presencia/Ausonola	Presente	Ausencia	945999000000000000000000000000000000000	Ausencia
	raiga aguas	_	desectors	Grassia y Acetes	Presencial/Juscopia	Presente	Ausencia	SZQUEG GEORGES	Ausencia
	speig de la zona			Olev	Presencia/Nusencia	Presente	Ausencia	\$1000000000000000000000000000000000000	Ausenela
	8			Temperatura	р	13,80	±5°C respecto a la Temp, ambiente		± 6 °C respecto a la Temp, ambiente
				Cofformes Totales	NMP/100ml	11 000	125 GREEN APPROX	00000	< 20,000
				Cofformes Fecales	NMP100ml	1500	をない とのでは、	STREET, BUSINESS	STATE SERVICE

"Ambiente para Construir Región"

Carrera 7 No. 1A -52 - PBX: (091) 8538511/13/34 Gachalá, Cundinamarca - Colombia - www.corpoguavio.gov.co

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

24 ABR. 2006

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO — CORPOGUAVIO

		like Antion del	CRITERIO DE		Par	Parámetro Fisicoquímico		
Corriente	Tramo	Mana	CALIDAD BEGUN	Parametro	Unidad de Medide	Valor Medido	Valor Técnico para el uso actual	Objetivo de Calidad
				Salo	を かったの 機関の関	Cuenca Alta	大学の一年の記録	(の場合の) (金の) (金の)
			_	Caudal	TV.	77,50		100 St. 100 St
			_	£	unidades de pH	7,31	entre 5,0 y 9,0	entre 5,0 y 9,0
			CLASE11-	080	marl	<2	10 VI	V1
			Abastacimiento de	SET	liou	22		<20
	Zone 1. Cuenca	Abastecimiento	ose ased onde	6	med	167	250	27,0
REIO NEGRO	_		comesion	Material Clotratio	Descending County	STATE SEC. 180.1.381.1.301.1.	Ausencia	Ausencia
	_	Agricola, Pecuario	_	Constant Constant	Preservició sercia	200 C 7000 C 3000	Ausencia	Ausencia
	Zona Urbana		Documento de Bora	Ole Common	Preservela (Ausencia	6775000	Ausencia	Ausencia
OON			y Faura	Temperatura	ç	868	± 5 °C respecto a la Temp, ambiente	+ 6 *C respecto a la Temp, ambiente
			_	Colleannes Totales	MMONOMA	900	< 20,000	< 20.000
				Colfornes Fecales	NAMP/100ml	8	> 2000	< 2.000
				Sife	ST. SERVICE IN	Desp. Zona Mezda	1788 SEC 1602	
			_	Caudal	5	1098,8		のでも関うとの形式で
				Ł	Hd ep sephon	8,37	entre 5,0 y 9,0	entre 5,0 y 9,0
				600	mor	42	250	225
_	90 EUG7 7 EUG7			SST	mof.	S.	SOME SECURITY	
	ADD Edmenter	Asimilación y	Class V Drensje y	8	mo/L	8,61	≥3,0	7.2
RIO NEGRO	_	Diludón (zona	transporte de	Material Rotante	Presencia/Ausencia	のの多くのでのできる	Ausencia	Ausencia
	ahain de la zona	urbana Fómeque)	desectors	Grassa v Acetes	Presencia/Ausencia	を ののないのである	Autencia	Ausencia
	de mercia			Olev	Presencia/Ausencia	SECTION OF STREET	Autercia	_
				Temperatura	٥	15,30	±5 °C respecto a la Temp, ambiente	7 par
_			_	Colfornes Totales	NAP/100ml	280000	STATE OF THE PERSON	< 20.000
				Colfornes Fecales	NMP/100ml	14000		
				Silio	S135000000000000000000000000000000000000	Agues abajo Z.Mezola	の場合では	
				Caudal	3	4297,4	SCENE (1999) (1995)	CONTRACTOR SERVICES
			_	Ha	Hd age bh	8,76	entre 5,0 y 9,0	entre 5,0 y 9,0
			.′	080	mg/L	<2	× 20	77
	Zona 3. Agues			188T	may	27	\$1200 PROPERTY	F 126221-134-MB02-80
_	8	Asimilación y	Class V Dessaje y	00	mort	8,52	23,0	27
RIO NEGRO	O Company (hours		ä	Material Flotante	Presencia/Ausencia	CHARLESTER CONTRACTOR	Ausencia	Ausencia
	configuration	urbana Fómeque)	desectors	Grasse v Acebes	Presencia/Ausencia	School made Stranger	Ausencia	Ausencia
	of Rio Baron			Olor	Presencia/Ausencia	188 - NO 188 188 188 188 188 188 188 188 188 18	Ausencia	-
				Temperatura	ç	15,70	±5°C respects a la Temp, ambiente	191
_				Colformes Totales	MMP/100ml	210000	A SECTION OF PROPERTY.	< 20.000
				Colfornes Fecales	NMP/100ml	23000		

"Ambiente para Construir Región"

Carrera 7 No. 1A -62 - PBX: (881) 8538511/13/34 Gachalá, Cundinamarca - Colombia - www. corpoguavio.gov.co

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

2 4 ABR. 2008

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO – CORPOGUAVIO

		Han Arteral del	CRUTEPIO DE		Par	Parimetro Fisicoquímico		
Confente	ĵį.	Agus	CALIDAD SEGUN	Parimetro	Unidad de Medida	Valor Medido	Vator Técnico para el uso actual	Objetive de Calidad
				Sitio	100 Per 100 Pe	Antes Zone Urbana	Alignet blow - The 2015	ACT (000)
				Caudal	5	2943,80		
			-	Ŧ	Hd eb sepapen	8,56	embre 5,0 y 9,0	entre 5,0 y 9,0
			CASEL: 1-	080	mail.	4	955	24
	Zons 1. Cuence	Pecuario	SCHOOL SCHOOL SC	28ET	mert	45	1985 OES (N. 1985)	< 20
cja	Alta / Nacimiento		doméstico	38	mort	7.22	0,64	≥7,0
CAZAWIMO		Red	_	Material Firsterite	Possencia/Ausiercia	Ausente	Ausencia	Ausencia
		_	convencional); 2-	Creese v Acadas	PresencialAucencia	Ausento	Ausencie	Ausencia
			Preservación de	Olor	Presencia/Autornola	Ausertia	Ausencia	Ausencia
			Flora y Featra	Temperatura	ò	24,40	±5 °C respecto a la Temo, ambiente	+6 *C respecto a la Temp, ambiente
			_	Collegence Telelas	MADISODAY	2000	< 20.000	< 20.000
				Collinson Females	NMP/100ml	280	< 2,000	< 2.000
				Salo	12800 to 10	Desp. Zone Mezola	の日の一大学をあり、日の日	351-00-00-00-00-00-00-00-00-00-00-00-00-00
				Caudal	67	2132,9	AMES AND ASSESSMENT	September College
	Zona 2, Zona de	_	_	1	Hid eb septimi	8000	entre 5.0 y 9,0	entre 5,0 y 9,0
	descarga de	Pecuario		DBO	mg/L	<2	520	× 5
	ARD Medina /	ganaderla,	_	188	mail	45	STATE OF THE PARTY AND IN	\$25.50 Property (\$25.50)
	hasta agues	<u>.</u>	Case V. Donnie v	8	mail	0,49	> 3,0	22
윤	#	contaco 2"	transcotts de	Material Fictions	Presencia/Ausencia	Ausente	Ausencia	Ausencia
GAZAMUNO	_		desectors	Graces v Anethor	Presencia/Ausoncia	Ausento	Ausencia	Ausenoia
	(Antes de Carlo	Asimilación y		Olee	Presencia (Ausoricia	Ausentia	Ausencia	Ausencia
	Muerto hesta Sector de	dBución (zona utana Medito)		Temperatura	p	26,10	± 5 °C respecto a la Temp, ambiento	± 5 °C respecto a la Temp, ambiente
	(Sp/spd			Calformer Totales	NMP/100m/	1100		< 20.000
			_	Colformes Fecales	NMP/100ml	22	West of the sol	17 S. W. H. #160387
				Shio	CONTROL	Aguas abajo Z Mezda	\$2500 P. SEC. 1990	を のからののできる
				Caudal	so.	3722,9	9160-101 PMS - 1038	STATE AND ADDRESS OF
				¥	Hd eb sepepinn	90'6	6,5-6,5	entre 6,6 y 8,9
			į	6080	mg/L	<2	95	22
	Zona 2. Aguas	_	Abacteriories de	T88	mg/l.	4.5	SPRING STATES	COUNT CONSUMENT
ģ	abajo del casco urbano de	Nec.		8	mg/L	8,19	70% del valor de saburación	, 27
ONT AND INC.	_	Shoffwaren,	desirtecciónic	Meterial Fisheria	Presencia/Ausencia	Auserte	Ausencia	Ausencia
	_		2-Recreative de	Grants v Aceited	Presencia/Ausencia	Auserte	Ausencia	Ausencia
	confluencia con	ě	Contacto Primario	Oler	Presencia/Autoricia	Ausento	Ausencia	Ausencia
	ef Rio Gazaguán	€	(Barlos y Recreo)	Temperatura	û	27,80	±5°C respecto a la Temp. ambiente	1e 1
				Colfornes Totales	NAMP/100ml	2300	< 1000	× 1000
				Culfornac Facoles	MMP/100ml	110	< 200	< 200

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

2 4 ABR. 2008

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO – CORPOGUAVIO

	Objetivo de Calidad		entre 6,5 y 8,5	<u>^</u> 22		≥7,0	Ausencia	Ausencia	Ausencia	±5 °C respecto a la Temp. ambiente	< 1000	< 200		5,0-9,0	<5		OD ≥ 5,0 mg/l (70% del valor de saturación)	Ausencia	Ausencia	Ausencia	±5 °C respecto a la Temp, ambiente	< 50000	い 一
	Valor Técnico para el uso actual		6,5 - 8,5	OD≥5,0 mg/l (70% del valor de		> 5,0	Ausencia	Ausencia	Ausencia	±5 °C respecto a la Temp. ambiente	× 1000	< 200		5,0-9,0	<.5 <.5		00 ≥ 5,0 mg/ (70% del valor de saturación)	Ausencia	Ausencia	Ausencia	±5 °C respecto a la Temp, ambiente	< 50000	はおからるをは
Parámetro Fisicoquímico	Valor Medido	Sector Cabarias	7.45	<2	¢2	7.29	Ausente	Ausente	Ausente	22,70	1400	110	Sector Presa	07.7	<2	<5	82.	Ausente *	Ausente	Ausente	21,20	2300	280
Į	Unidad de Medida	で の の の の の の の の の の の の の の の の の の の	Hd ep gen unidades de pH	mgl	lom	mg/L	Presencia/Ausencia	Presencia/Ausencia	Presencia/Ausencia	ပ္	NMPHOOM	NMPYDOmi		unidades de pH	mg/L	mol	mg/L	Presencia/Ausencia	Presencia/Ausencia	Presencia/Ausencia	ò	NMPY00ml	NMPH00ml
	Parámetro	Sirio	꿈	DBO	ISS	8	Material Flotante	Grasas v Aceites	. Olor	Temperatura	Cofformes Totales	Colifornes Fecales	Silo	돔	DBO	SST	8	Material Flotante	Grass v Acetes	Clor	Тетрегатия	Cofformes Totales	Colifornes Fecales
CRITERIO DE	CALIDAD SEGUN USO			- March	Generación de	Energia / Clase II. 2	Recreativo de	Contacto Primario	(Baños v Recreo)			_		_			Clase IV. 1-	Ceneración de	Energia			_	
Han Antonia ded	y de			Generación de	energia, Recreativo	contacto frio	(natación) y 2rio	(navegación),	Asimilación (zona	urbana (Sachala)							Generación de	energia	•				
	out I			Zona 1. Área de	varimientos del DS	Municipio de		de Puerto - Zona	actividad	ncreativa							Zona 2. Sector						
	Countering					FMRALSE	DEI GUAVIO			IXVI		פוס				ENC	EMBALSE	DEL GUAVIO					

"Ambiente para Construir Region"

Carrera 7 No. 1A -52 - PBX: (081) \$538\$11/13/34 Gachalá, Cundinamarca - Colombia - www.corpoguavio.gov.co

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

2 4 ABR. 2008

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO – CORPOGUAVIO

	Parametro Unidad de Medida Valor Medido		
Caudal	Artes Zora Urtana	are	
	16,00	200	
Hd	2,000 Hg de pH 7,86	65-85	entire 6,6 y 8,6
080	mg/L <2	35	VI VI
SST	me/L	2001000 2800000	< 20
8	mo/. 7,93	× 5,0	27,0
Material Flotante	te Presencia/Ausencia Ausente	Ausencia	Ausencia
Greass v Aceiles	es Presencial/Ausencia Ausente	Ausenda	Ausancia
ob	T	Ausencia	4
Temperatura	14,80	± 5 °C respecto a la Temp, ambiente	+ 6 °C respecto a la Temp, ambiente
Colfornae Totales	oles NMP/100ml 4300	× 1000	< 1000
Colliornes Fectiles	NMP/100ml	> 200	× 200
989	1000	COCK COCK COCK COCK	CORP. F. GALDTIDESH
Cauda	119,5	の国際が、公司の日本	1000 - 1000 Billion
Ŧ	Unidades de pH 7,50	entre 5,0 y 9,0	entre 6,0 y 9,0
90	may.	230	243
1	ma/. 18	Charles Agents	
8	ma/l. 7,44	≥3,0	24
Material Fiotante	Present	Ausenois	Ausencia
Granat v Acades	t	Ausencia	Ausencia
Common y	Presencia/Ausencia	Ausencia	Ausencia
5	-	± 5 °C respecto a la	+1
emperating	,	emp. ampense	Temp. emplement
Colformes Totales	NMP/100ml	412186 September	< 20,000
Coliformes Fecales	NMP/100ml	THE PROPERTY OF THE PARTY OF TH	
Stbo	Aguas abajo Z. Mezela	Wezcla	100
Cauda	132,10		1. 188005773730585777
표	7,96 unidades de pH 7,96	entre 5,0 y 9,0	entre 6,0 y 3,0
080	mp/L 2	92	52
884	mg/L 12	2000 P. S.	¢ 20
8		× 5.0	27,0
Meterial Fivlants	Presencia/Ausencia	Ausencia	Ausencia
20000	t	Ausencia	Ausancia
GRAMM ACCINE	†	Ausencia	Ausenola
5		al & Observed Of 8 +	b + 6 °C respecto a la
Temperatura	19,00	Temp. ambiente	-
			< 20,000
Colifornia Totales	states NMP/100ml 39000		

49

"Ambiente para Construir Región"

Carrera 7 No. 1A -52 - PBX: (951) 8538611/13/34 Gachalá, Cundinamarca - Colombia - www.corpoguavio.gov.co

SUBDIRECCION DE GESTION AMBIENTAL

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO CORPOGUAVIO

RESOLUCIÓN No 142 de

2 4 ABR 2008

POR MEDIO DE LA CUAL SE ESTABLECEN LOS OBJETIVOS DE CALIDAD PARA LAS FUENTES RECEPTORAS DE VERTIMIENTOS URBANOS DE LA JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO – CORPOGUAVIO

ARTICULO TERCERO.- Ordenar la publicación de la resolución en la página web de la Corporación y comunicar la misma a los entes territoriales y las Empresas Prestadoras del Servicio de Alcantarillado, con la finalidad de que con base en lo establecido en esta resolución, presenten los respectivos Planes de Saneamiento y Manejo de Vertimientos

PARAGRAFO. A partir de la publicación de la presente resolución los Prestadores del Servicio de Alcantarillado de las zonas urbanas de los Municipios ubicados en Jurisdicción de Corpoguavio, tendrán un plazo máximo de cuatro (4) meses, para la presentación de los Planes de Saneamiento y Manejo de Vertimientos reglamentados a través de las Resoluciones 1433 de 2004 y 2145 de 2005, proferidas por el Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

ARTICULO QUINTO.- Esta resolución rige a partir de la fecha de su publicación.

Dado en Gachalá, a los 2 4 ABR 2008

PUBLIQUESE Y CUMPLASE

MARCOS ALBERTO BARRETO GARCIA Director General

PUBLICADA JUAYO/08

CORPORACIÓN AUTÓNOMA REGIONAL DEL GUAVIO

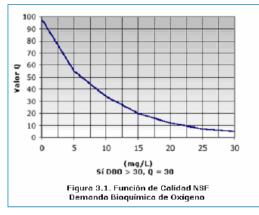
SUBDIRECCION DE GESTION AMBIENTAL

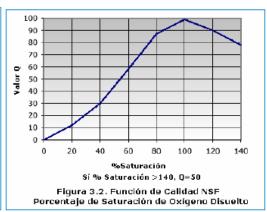
ANEXO 2.

CALCULO DEL INDICE DE CALIDAD DEL AGUA - ICA

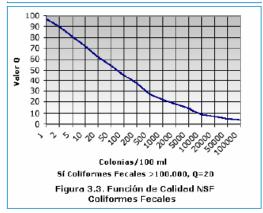
En la actualidad el índice una un Promedio Aritmético Ponderado:

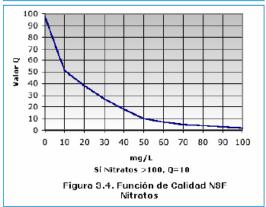
$$ICAa = WQI = \sum_{i=1}^{n} SI_{i}W_{i}$$

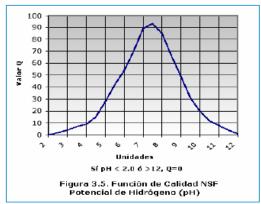

$$ICA m = \left(\prod_{t=1}^{n} SI_{t}\right)^{W_{t}}$$

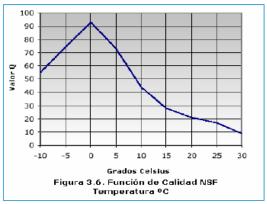

Donde:

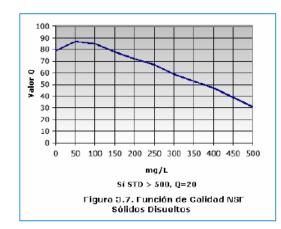
- WQI: Índice de Calidad de Agua
- SI_i = Subíndice del Parámetro i
- W_i= Factor de Ponderación para el Subíndice i

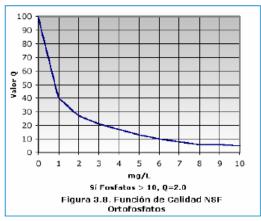

Mientras la suma lineal ponderada se usa ampliamente, la agregación del producto ponderado, evita eclipsar el resultado, porque si un subíndice es cero, entonces el índice es automáticamente cero.

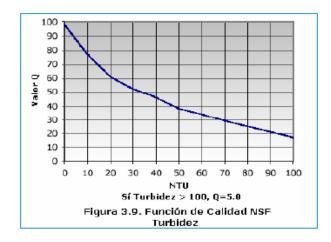

Los subíndices del Parámetro i; SI_i, son calculados u obtenidos de las siguientes graficas:











SUBDIRECCION DE GESTION AMBIENTAL

Los pesos para los subíndices son:

Parámetro	Wi
Coliformes Fecales	0,16
pH	0,11
DBO	0,11
NO3	0,1
PO4	0,1
TEMPERATURA	0,1
TURBIDEZ	0,08
ST	0,07
OD	0,17

El resultado final es interpretado de acuerdo a la siguiente escala de clasificación.

Excelente: 91-100	
Buena	: 71-90
Media	: 51-70
Mala	: 26-50
Muy Mala : 0-25	

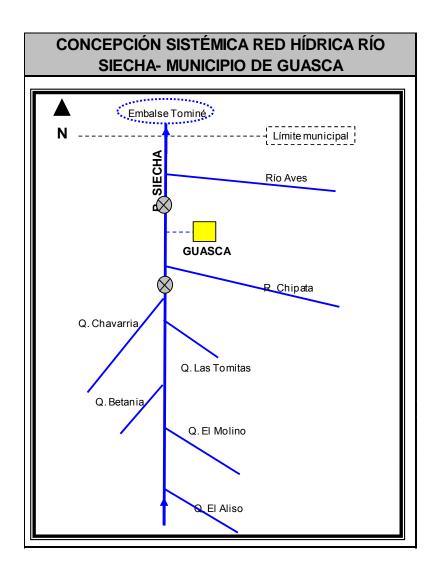
En los informes de monitoreo de calidad, los análisis se efectuaron teniendo en cuenta el valor y la clasificación obtenidas con el índice ICAm.

SUBDIRECCION DE GESTION AMBIENTAL

ANEXO 3. RED HÍDRICA DE LA JURISDICCIÓN

En las figuras que se presentan a continuación se identifica la red hídrica de la jurisdicción y las fuentes de interés de cada municipio;

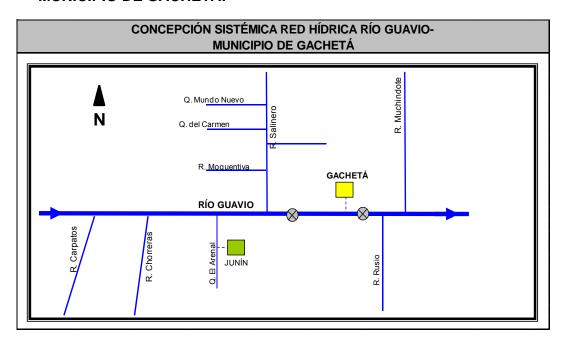
Figura 1. Ubicación de Municipios y corrientes consideradas dentro de los objetivos de Calidad


8. Río Gazamumo – Municipio de Medina

SUBDIRECCION DE GESTION AMBIENTAL

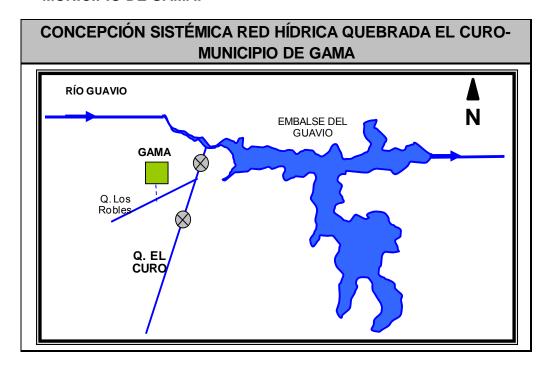
Dado a que los vertimientos puntuales pueden realizarse directa o indirectamente sobre aquellas corrientes con Objetivos de Calidad, es importante considerar los afluentes que tributan sobre las mismas

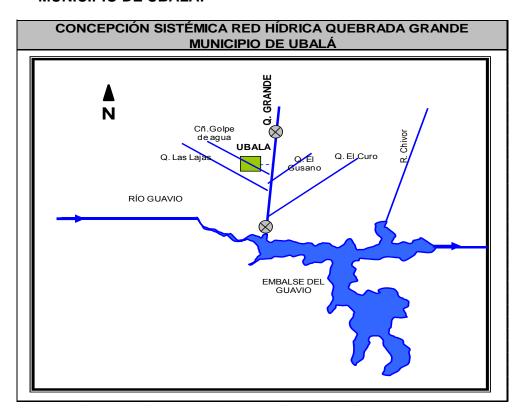

MUNICIPIO DE GUASCA:



SUBDIRECCION DE GESTION AMBIENTAL

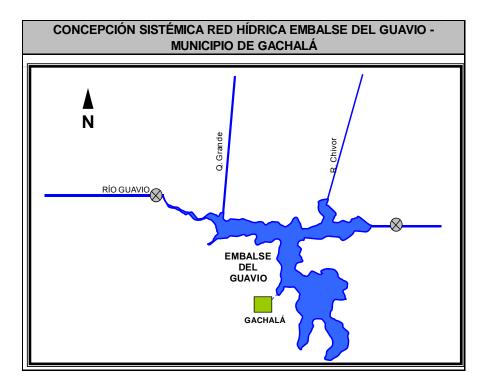
• MUNICIPIO DE JUNÍN:

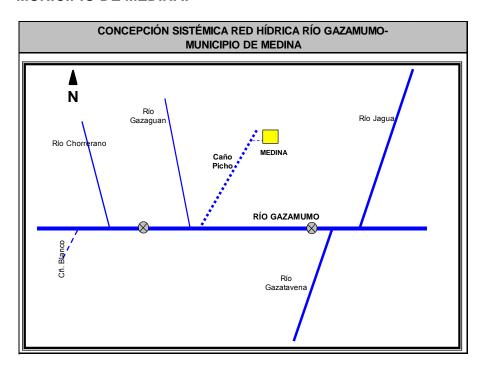

MUNICIPIO DE GACHETÁ:



SUBDIRECCION DE GESTION AMBIENTAL

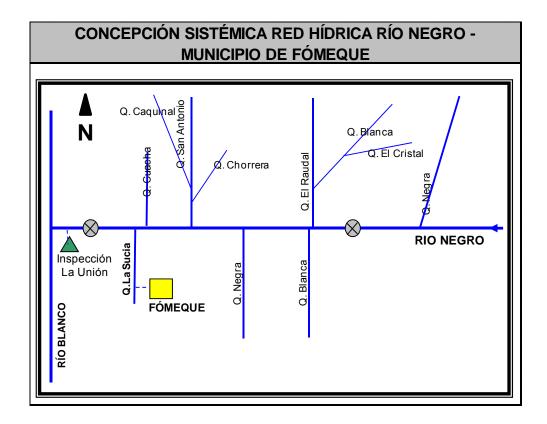
• MUNICIPIO DE GAMA:


MUNICIPIO DE UBALÁ:



SUBDIRECCION DE GESTION AMBIENTAL

• MUNICIPIO DE GACHALÁ:


• MUNICIPIO DE MEDINA:

SUBDIRECCION DE GESTION AMBIENTAL

• MUNICIPIO DE FOMEQUE:

